Shooting for collinear periodic orbits in the Helium model
The frozen-planet periodic orbit of the classical collinear Helium model with negative energy is shown to exist by a simple shooting argument. This simplifies the approach established in Cieliebak et al. (Ann Inst H Poincaré Anal Non Linéaire 40:379–455, 2022). With this argument, it also follows th...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2023-12, Vol.74 (6), Article 227 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 74 |
creator | Zhao, Lei |
description | The frozen-planet periodic orbit of the classical collinear Helium model with negative energy is shown to exist by a simple shooting argument. This simplifies the approach established in Cieliebak et al. (Ann Inst H Poincaré Anal Non Linéaire 40:379–455, 2022). With this argument, it also follows that the algebraic count of the number of such orbits with a given negative energy is 1, as recently established in Cieliebak et al. (Nondegeneracy and integral count of frozen-planet orbits in helium, 2022.
arXiv:2209.12634
). The same argument also leads to the existence of other collinear periodic orbits of the classical collinear Helium model. |
doi_str_mv | 10.1007/s00033-023-02120-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878318828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878318828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-192df025294c00dfcf0384bb13d7b1b708a32dc9c662ad459778abd9ad4e6eee3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyWmANnO41tNlQBRarEAMxWYl9aV2lc7GTg7XEJEhvD6W74_v-kj5BrBrcMQN4lABCiAH4cxqFQJ2TGynxoEPqUzADKsuBcLs7JRUq7jEsGYkbu37YhDL7f0DZEakPX-R7rSA8YfXDe0hAbPyTqezpska6w8-Oe7oPD7pKctXWX8Op3z8nH0-P7clWsX59flg_rwopKDAXT3LXAF1yXFsC1tgWhyqZhwsmGNRJULbiz2lYVr1250FKqunE631ghopiTm6n3EMPniGkwuzDGPr80XEklmFJcZYpPlI0hpYitOUS_r-OXYWCOjszkyGRH5seROYbEFEoZ7jcY_6r_SX0Du6No1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878318828</pqid></control><display><type>article</type><title>Shooting for collinear periodic orbits in the Helium model</title><source>SpringerNature Journals</source><creator>Zhao, Lei</creator><creatorcontrib>Zhao, Lei</creatorcontrib><description>The frozen-planet periodic orbit of the classical collinear Helium model with negative energy is shown to exist by a simple shooting argument. This simplifies the approach established in Cieliebak et al. (Ann Inst H Poincaré Anal Non Linéaire 40:379–455, 2022). With this argument, it also follows that the algebraic count of the number of such orbits with a given negative energy is 1, as recently established in Cieliebak et al. (Nondegeneracy and integral count of frozen-planet orbits in helium, 2022.
arXiv:2209.12634
). The same argument also leads to the existence of other collinear periodic orbits of the classical collinear Helium model.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-023-02120-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Engineering ; Helium ; Mathematical Methods in Physics ; Planetary orbits ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2023-12, Vol.74 (6), Article 227</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-192df025294c00dfcf0384bb13d7b1b708a32dc9c662ad459778abd9ad4e6eee3</citedby><cites>FETCH-LOGICAL-c363t-192df025294c00dfcf0384bb13d7b1b708a32dc9c662ad459778abd9ad4e6eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-023-02120-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-023-02120-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Lei</creatorcontrib><title>Shooting for collinear periodic orbits in the Helium model</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>The frozen-planet periodic orbit of the classical collinear Helium model with negative energy is shown to exist by a simple shooting argument. This simplifies the approach established in Cieliebak et al. (Ann Inst H Poincaré Anal Non Linéaire 40:379–455, 2022). With this argument, it also follows that the algebraic count of the number of such orbits with a given negative energy is 1, as recently established in Cieliebak et al. (Nondegeneracy and integral count of frozen-planet orbits in helium, 2022.
arXiv:2209.12634
). The same argument also leads to the existence of other collinear periodic orbits of the classical collinear Helium model.</description><subject>Engineering</subject><subject>Helium</subject><subject>Mathematical Methods in Physics</subject><subject>Planetary orbits</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLFOwzAQhi0EEqXwAkyWmANnO41tNlQBRarEAMxWYl9aV2lc7GTg7XEJEhvD6W74_v-kj5BrBrcMQN4lABCiAH4cxqFQJ2TGynxoEPqUzADKsuBcLs7JRUq7jEsGYkbu37YhDL7f0DZEakPX-R7rSA8YfXDe0hAbPyTqezpska6w8-Oe7oPD7pKctXWX8Op3z8nH0-P7clWsX59flg_rwopKDAXT3LXAF1yXFsC1tgWhyqZhwsmGNRJULbiz2lYVr1250FKqunE631ghopiTm6n3EMPniGkwuzDGPr80XEklmFJcZYpPlI0hpYitOUS_r-OXYWCOjszkyGRH5seROYbEFEoZ7jcY_6r_SX0Du6No1w</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhao, Lei</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Shooting for collinear periodic orbits in the Helium model</title><author>Zhao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-192df025294c00dfcf0384bb13d7b1b708a32dc9c662ad459778abd9ad4e6eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Engineering</topic><topic>Helium</topic><topic>Mathematical Methods in Physics</topic><topic>Planetary orbits</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shooting for collinear periodic orbits in the Helium model</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>74</volume><issue>6</issue><artnum>227</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>The frozen-planet periodic orbit of the classical collinear Helium model with negative energy is shown to exist by a simple shooting argument. This simplifies the approach established in Cieliebak et al. (Ann Inst H Poincaré Anal Non Linéaire 40:379–455, 2022). With this argument, it also follows that the algebraic count of the number of such orbits with a given negative energy is 1, as recently established in Cieliebak et al. (Nondegeneracy and integral count of frozen-planet orbits in helium, 2022.
arXiv:2209.12634
). The same argument also leads to the existence of other collinear periodic orbits of the classical collinear Helium model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-023-02120-8</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2023-12, Vol.74 (6), Article 227 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2878318828 |
source | SpringerNature Journals |
subjects | Engineering Helium Mathematical Methods in Physics Planetary orbits Theoretical and Applied Mechanics |
title | Shooting for collinear periodic orbits in the Helium model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shooting%20for%20collinear%20periodic%20orbits%20in%20the%20Helium%20model&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Zhao,%20Lei&rft.date=2023-12-01&rft.volume=74&rft.issue=6&rft.artnum=227&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-023-02120-8&rft_dat=%3Cproquest_cross%3E2878318828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878318828&rft_id=info:pmid/&rfr_iscdi=true |