Vorticity phase separation and defect lattices in the isotropic phase of active liquid crystals

We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2023-10, Vol.19 (4), p.7828-7835
Hauptverfasser: Caballero, Fernando, You, Zhihong, Marchetti, M. Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7835
container_issue 4
container_start_page 7828
container_title Soft matter
container_volume 19
creator Caballero, Fernando
You, Zhihong
Marchetti, M. Cristina
description We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a critical activity, eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at intermediate activity, including lattices of flow vortices with associated regular arrangements of topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each other's tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale of these emergent structures is set by the screening length of the flow, controlled by the shear viscosity η and the substrate friction Γ , and can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking conservation of the phase separating species and selecting a characteristic scale for the patterns. Our work shows that friction provides an experimentally accessible tuning parameter for designing controlled active flows. We use numerical simulations and linear stability analysis to study the emergent vortex lattices in the isotropic regime of an active liquid crystal.
doi_str_mv 10.1039/d3sm00744h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878279681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878279681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-964f6b9d21a9584d2b060b8b0ae13e4f70bffaaa9744d79772aad5ceaa494e663</originalsourceid><addsrcrecordid>eNpd0UtLAzEUBeAgCtbqxr0QcCNCNZmkmcxS6qNCxYUP3A138qAp08k0yQj9905tqeDqZPEl5J6L0DklN5Sw4lazuCQk53x-gAa0z5GQXB7uz-zrGJ3EuCCESU7FAJWfPiSnXFrjdg7R4GhaCJCcbzA0GmtjjUq4htQrE7FrcJob7KJPwbdO7W55i0El921w7Vad01iFdUxQx1N0ZPswZ7scoo_Hh_fJdDR7fXqe3M1GilGeRoXgVlSFzigUY8l1VhFBKlkRMJQZbnNSWQsART-Gzos8zwD0WBkAXnAjBBuiq-27bfCrzsRULl1Upq6hMb6LZSZzlo2p5Kynl__owneh6X-3UTLLCyFpr663SgUfYzC2bINbQliXlJSbrst79vby2_W0xxdbHKLau79dsB97SHya</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878279681</pqid></control><display><type>article</type><title>Vorticity phase separation and defect lattices in the isotropic phase of active liquid crystals</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Caballero, Fernando ; You, Zhihong ; Marchetti, M. Cristina</creator><creatorcontrib>Caballero, Fernando ; You, Zhihong ; Marchetti, M. Cristina</creatorcontrib><description>We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a critical activity, eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at intermediate activity, including lattices of flow vortices with associated regular arrangements of topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each other's tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale of these emergent structures is set by the screening length of the flow, controlled by the shear viscosity η and the substrate friction Γ , and can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking conservation of the phase separating species and selecting a characteristic scale for the patterns. Our work shows that friction provides an experimentally accessible tuning parameter for designing controlled active flows. We use numerical simulations and linear stability analysis to study the emergent vortex lattices in the isotropic regime of an active liquid crystal.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d3sm00744h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Active control ; Crystal defects ; Crystal lattices ; Crystals ; Dynamic stability ; Fluid dynamics ; Fluid flow ; Friction ; Hexagonal lattice ; Liquid crystals ; Modal choice ; Phase separation ; Rotation ; Shear viscosity ; Stability analysis ; Substrates ; Tuning ; Vortices ; Vorticity</subject><ispartof>Soft matter, 2023-10, Vol.19 (4), p.7828-7835</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-964f6b9d21a9584d2b060b8b0ae13e4f70bffaaa9744d79772aad5ceaa494e663</citedby><cites>FETCH-LOGICAL-c314t-964f6b9d21a9584d2b060b8b0ae13e4f70bffaaa9744d79772aad5ceaa494e663</cites><orcidid>0000-0002-6699-1148 ; 0000-0003-0807-2087 ; 0000-0003-3583-4999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Caballero, Fernando</creatorcontrib><creatorcontrib>You, Zhihong</creatorcontrib><creatorcontrib>Marchetti, M. Cristina</creatorcontrib><title>Vorticity phase separation and defect lattices in the isotropic phase of active liquid crystals</title><title>Soft matter</title><description>We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a critical activity, eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at intermediate activity, including lattices of flow vortices with associated regular arrangements of topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each other's tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale of these emergent structures is set by the screening length of the flow, controlled by the shear viscosity η and the substrate friction Γ , and can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking conservation of the phase separating species and selecting a characteristic scale for the patterns. Our work shows that friction provides an experimentally accessible tuning parameter for designing controlled active flows. We use numerical simulations and linear stability analysis to study the emergent vortex lattices in the isotropic regime of an active liquid crystal.</description><subject>Active control</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Crystals</subject><subject>Dynamic stability</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Friction</subject><subject>Hexagonal lattice</subject><subject>Liquid crystals</subject><subject>Modal choice</subject><subject>Phase separation</subject><subject>Rotation</subject><subject>Shear viscosity</subject><subject>Stability analysis</subject><subject>Substrates</subject><subject>Tuning</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLAzEUBeAgCtbqxr0QcCNCNZmkmcxS6qNCxYUP3A138qAp08k0yQj9905tqeDqZPEl5J6L0DklN5Sw4lazuCQk53x-gAa0z5GQXB7uz-zrGJ3EuCCESU7FAJWfPiSnXFrjdg7R4GhaCJCcbzA0GmtjjUq4htQrE7FrcJob7KJPwbdO7W55i0El921w7Vad01iFdUxQx1N0ZPswZ7scoo_Hh_fJdDR7fXqe3M1GilGeRoXgVlSFzigUY8l1VhFBKlkRMJQZbnNSWQsART-Gzos8zwD0WBkAXnAjBBuiq-27bfCrzsRULl1Upq6hMb6LZSZzlo2p5Kynl__owneh6X-3UTLLCyFpr663SgUfYzC2bINbQliXlJSbrst79vby2_W0xxdbHKLau79dsB97SHya</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Caballero, Fernando</creator><creator>You, Zhihong</creator><creator>Marchetti, M. Cristina</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6699-1148</orcidid><orcidid>https://orcid.org/0000-0003-0807-2087</orcidid><orcidid>https://orcid.org/0000-0003-3583-4999</orcidid></search><sort><creationdate>20231018</creationdate><title>Vorticity phase separation and defect lattices in the isotropic phase of active liquid crystals</title><author>Caballero, Fernando ; You, Zhihong ; Marchetti, M. Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-964f6b9d21a9584d2b060b8b0ae13e4f70bffaaa9744d79772aad5ceaa494e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active control</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Crystals</topic><topic>Dynamic stability</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Friction</topic><topic>Hexagonal lattice</topic><topic>Liquid crystals</topic><topic>Modal choice</topic><topic>Phase separation</topic><topic>Rotation</topic><topic>Shear viscosity</topic><topic>Stability analysis</topic><topic>Substrates</topic><topic>Tuning</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caballero, Fernando</creatorcontrib><creatorcontrib>You, Zhihong</creatorcontrib><creatorcontrib>Marchetti, M. Cristina</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caballero, Fernando</au><au>You, Zhihong</au><au>Marchetti, M. Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vorticity phase separation and defect lattices in the isotropic phase of active liquid crystals</atitle><jtitle>Soft matter</jtitle><date>2023-10-18</date><risdate>2023</risdate><volume>19</volume><issue>4</issue><spage>7828</spage><epage>7835</epage><pages>7828-7835</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a critical activity, eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at intermediate activity, including lattices of flow vortices with associated regular arrangements of topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each other's tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale of these emergent structures is set by the screening length of the flow, controlled by the shear viscosity η and the substrate friction Γ , and can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking conservation of the phase separating species and selecting a characteristic scale for the patterns. Our work shows that friction provides an experimentally accessible tuning parameter for designing controlled active flows. We use numerical simulations and linear stability analysis to study the emergent vortex lattices in the isotropic regime of an active liquid crystal.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3sm00744h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6699-1148</orcidid><orcidid>https://orcid.org/0000-0003-0807-2087</orcidid><orcidid>https://orcid.org/0000-0003-3583-4999</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2023-10, Vol.19 (4), p.7828-7835
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_journals_2878279681
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Active control
Crystal defects
Crystal lattices
Crystals
Dynamic stability
Fluid dynamics
Fluid flow
Friction
Hexagonal lattice
Liquid crystals
Modal choice
Phase separation
Rotation
Shear viscosity
Stability analysis
Substrates
Tuning
Vortices
Vorticity
title Vorticity phase separation and defect lattices in the isotropic phase of active liquid crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vorticity%20phase%20separation%20and%20defect%20lattices%20in%20the%20isotropic%20phase%20of%20active%20liquid%20crystals&rft.jtitle=Soft%20matter&rft.au=Caballero,%20Fernando&rft.date=2023-10-18&rft.volume=19&rft.issue=4&rft.spage=7828&rft.epage=7835&rft.pages=7828-7835&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d3sm00744h&rft_dat=%3Cproquest_cross%3E2878279681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878279681&rft_id=info:pmid/&rfr_iscdi=true