A Selective, Hydrogel‐Based Prodrug Delivery System Efficiently Activates a Suicide Gene to Remove Undifferentiated Human Stem Cells Within Neural Grafts

The directed differentiation of human pluripotent stem cells (hPSCs) into defined populations has advanced regenerative medicine, especially for Parkinson's disease where clinical trials are underway. Despite this, tumorigenic risks associated with incompletely patterned and/or quiescent prolif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-10, Vol.33 (43)
Hauptverfasser: Law, Kevin C. L., Mahmoudi, Negar, Zadeh, Zahra E., Williams, Richard. J., Hunt, Cameron P. J., Nagy, Andras, Thompson, Lachlan H., Nisbet, David R., Parish, Clare L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 43
container_start_page
container_title Advanced functional materials
container_volume 33
creator Law, Kevin C. L.
Mahmoudi, Negar
Zadeh, Zahra E.
Williams, Richard. J.
Hunt, Cameron P. J.
Nagy, Andras
Thompson, Lachlan H.
Nisbet, David R.
Parish, Clare L.
description The directed differentiation of human pluripotent stem cells (hPSCs) into defined populations has advanced regenerative medicine, especially for Parkinson's disease where clinical trials are underway. Despite this, tumorigenic risks associated with incompletely patterned and/or quiescent proliferative cells within grafts remain. Addressing this, donor stem cells carrying the suicide gene, thymidine kinase (activated by the prodrug ganciclovir, GCV), are employed to enable the programmed ablation of proliferative cells within neural grafts. However, coinciding the short half‐life of GCV with the short S‐phase of neural progenitors is a key challenge. To overcome this, a smart hydrogel delivery matrix is fabricatedto prolong GCV presentation. Following matrix embedment, GCV retains its functionality, demonstrated by ablation of hPSCs and proliferating neural progenitors in vitro. A prolonged GCV release is measured by mass spectrometry following the injection of a GCV‐functionalized hydrogel into mouse brains. Compared to suboptimal, daily systemic GCV injections, the intracerebral delivery of the functionalized hydrogel, as a “one‐off treatment”, reduce proliferative cells in both hPSC‐derived teratomas and neural grafts, without affecting the graft's functional unit (i.e., neurons). It is demonstrated that a functionalized biomaterial can enhance prodrug delivery and address safety concerns associated with the use of hPSCs for brain repair.
doi_str_mv 10.1002/adfm.202305771
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878221015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878221015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-993b255e60e74ced94c72c36f3317c2002ea4882372c4c1c02d0f8e19ff958c43</originalsourceid><addsrcrecordid>eNo9kc1Kw0AUhYMoWKtb1xfc2jo_SSdZ1lpboagYi-7COHOnpuSnzkwK2fkI7n07n8SUiqt7OXznXLgnCM4pGVJC2JXUphwywjiJhKAHQY-O6GjACYsP_3f6ehycOLcmhArBw17wPYYUC1Q-3-IlzFtt6xUWP59f19Khhkdba9us4AaLDrAtpK3zWMLUmFzlWPmihfHOLD06kJA2nawRZlgh-BqesKy3CMtK58ag7Qx5R2qYN6WsIN1FTbAoHLzk_j2v4B4bKwuYWWm8Ow2OjCwcnv3NfrC8nT5P5oPFw-xuMl4MFCfCD5KEv7EowhFBESrUSagEU3xkOKdCse41KMM4ZrxTQ0UVYZqYGGliTBLFKuT94GKfu7H1R4POZ-u6sVV3MmOxiBmjhEYdNdxTytbOWTTZxualtG1GSbYrINsVkP0XwH8BLMd7fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878221015</pqid></control><display><type>article</type><title>A Selective, Hydrogel‐Based Prodrug Delivery System Efficiently Activates a Suicide Gene to Remove Undifferentiated Human Stem Cells Within Neural Grafts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Law, Kevin C. L. ; Mahmoudi, Negar ; Zadeh, Zahra E. ; Williams, Richard. J. ; Hunt, Cameron P. J. ; Nagy, Andras ; Thompson, Lachlan H. ; Nisbet, David R. ; Parish, Clare L.</creator><creatorcontrib>Law, Kevin C. L. ; Mahmoudi, Negar ; Zadeh, Zahra E. ; Williams, Richard. J. ; Hunt, Cameron P. J. ; Nagy, Andras ; Thompson, Lachlan H. ; Nisbet, David R. ; Parish, Clare L.</creatorcontrib><description>The directed differentiation of human pluripotent stem cells (hPSCs) into defined populations has advanced regenerative medicine, especially for Parkinson's disease where clinical trials are underway. Despite this, tumorigenic risks associated with incompletely patterned and/or quiescent proliferative cells within grafts remain. Addressing this, donor stem cells carrying the suicide gene, thymidine kinase (activated by the prodrug ganciclovir, GCV), are employed to enable the programmed ablation of proliferative cells within neural grafts. However, coinciding the short half‐life of GCV with the short S‐phase of neural progenitors is a key challenge. To overcome this, a smart hydrogel delivery matrix is fabricatedto prolong GCV presentation. Following matrix embedment, GCV retains its functionality, demonstrated by ablation of hPSCs and proliferating neural progenitors in vitro. A prolonged GCV release is measured by mass spectrometry following the injection of a GCV‐functionalized hydrogel into mouse brains. Compared to suboptimal, daily systemic GCV injections, the intracerebral delivery of the functionalized hydrogel, as a “one‐off treatment”, reduce proliferative cells in both hPSC‐derived teratomas and neural grafts, without affecting the graft's functional unit (i.e., neurons). It is demonstrated that a functionalized biomaterial can enhance prodrug delivery and address safety concerns associated with the use of hPSCs for brain repair.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202305771</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Biomedical materials ; Grafting ; Hydrogels ; Kinases ; Mass spectrometry ; Materials science ; Parkinson's disease ; Stem cells ; Thymidine</subject><ispartof>Advanced functional materials, 2023-10, Vol.33 (43)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-993b255e60e74ced94c72c36f3317c2002ea4882372c4c1c02d0f8e19ff958c43</citedby><cites>FETCH-LOGICAL-c307t-993b255e60e74ced94c72c36f3317c2002ea4882372c4c1c02d0f8e19ff958c43</cites><orcidid>0000-0002-1343-0769 ; 0000-0001-6652-0445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Law, Kevin C. L.</creatorcontrib><creatorcontrib>Mahmoudi, Negar</creatorcontrib><creatorcontrib>Zadeh, Zahra E.</creatorcontrib><creatorcontrib>Williams, Richard. J.</creatorcontrib><creatorcontrib>Hunt, Cameron P. J.</creatorcontrib><creatorcontrib>Nagy, Andras</creatorcontrib><creatorcontrib>Thompson, Lachlan H.</creatorcontrib><creatorcontrib>Nisbet, David R.</creatorcontrib><creatorcontrib>Parish, Clare L.</creatorcontrib><title>A Selective, Hydrogel‐Based Prodrug Delivery System Efficiently Activates a Suicide Gene to Remove Undifferentiated Human Stem Cells Within Neural Grafts</title><title>Advanced functional materials</title><description>The directed differentiation of human pluripotent stem cells (hPSCs) into defined populations has advanced regenerative medicine, especially for Parkinson's disease where clinical trials are underway. Despite this, tumorigenic risks associated with incompletely patterned and/or quiescent proliferative cells within grafts remain. Addressing this, donor stem cells carrying the suicide gene, thymidine kinase (activated by the prodrug ganciclovir, GCV), are employed to enable the programmed ablation of proliferative cells within neural grafts. However, coinciding the short half‐life of GCV with the short S‐phase of neural progenitors is a key challenge. To overcome this, a smart hydrogel delivery matrix is fabricatedto prolong GCV presentation. Following matrix embedment, GCV retains its functionality, demonstrated by ablation of hPSCs and proliferating neural progenitors in vitro. A prolonged GCV release is measured by mass spectrometry following the injection of a GCV‐functionalized hydrogel into mouse brains. Compared to suboptimal, daily systemic GCV injections, the intracerebral delivery of the functionalized hydrogel, as a “one‐off treatment”, reduce proliferative cells in both hPSC‐derived teratomas and neural grafts, without affecting the graft's functional unit (i.e., neurons). It is demonstrated that a functionalized biomaterial can enhance prodrug delivery and address safety concerns associated with the use of hPSCs for brain repair.</description><subject>Ablation</subject><subject>Biomedical materials</subject><subject>Grafting</subject><subject>Hydrogels</subject><subject>Kinases</subject><subject>Mass spectrometry</subject><subject>Materials science</subject><subject>Parkinson's disease</subject><subject>Stem cells</subject><subject>Thymidine</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kc1Kw0AUhYMoWKtb1xfc2jo_SSdZ1lpboagYi-7COHOnpuSnzkwK2fkI7n07n8SUiqt7OXznXLgnCM4pGVJC2JXUphwywjiJhKAHQY-O6GjACYsP_3f6ehycOLcmhArBw17wPYYUC1Q-3-IlzFtt6xUWP59f19Khhkdba9us4AaLDrAtpK3zWMLUmFzlWPmihfHOLD06kJA2nawRZlgh-BqesKy3CMtK58ag7Qx5R2qYN6WsIN1FTbAoHLzk_j2v4B4bKwuYWWm8Ow2OjCwcnv3NfrC8nT5P5oPFw-xuMl4MFCfCD5KEv7EowhFBESrUSagEU3xkOKdCse41KMM4ZrxTQ0UVYZqYGGliTBLFKuT94GKfu7H1R4POZ-u6sVV3MmOxiBmjhEYdNdxTytbOWTTZxualtG1GSbYrINsVkP0XwH8BLMd7fA</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Law, Kevin C. L.</creator><creator>Mahmoudi, Negar</creator><creator>Zadeh, Zahra E.</creator><creator>Williams, Richard. J.</creator><creator>Hunt, Cameron P. J.</creator><creator>Nagy, Andras</creator><creator>Thompson, Lachlan H.</creator><creator>Nisbet, David R.</creator><creator>Parish, Clare L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1343-0769</orcidid><orcidid>https://orcid.org/0000-0001-6652-0445</orcidid></search><sort><creationdate>20231018</creationdate><title>A Selective, Hydrogel‐Based Prodrug Delivery System Efficiently Activates a Suicide Gene to Remove Undifferentiated Human Stem Cells Within Neural Grafts</title><author>Law, Kevin C. L. ; Mahmoudi, Negar ; Zadeh, Zahra E. ; Williams, Richard. J. ; Hunt, Cameron P. J. ; Nagy, Andras ; Thompson, Lachlan H. ; Nisbet, David R. ; Parish, Clare L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-993b255e60e74ced94c72c36f3317c2002ea4882372c4c1c02d0f8e19ff958c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Biomedical materials</topic><topic>Grafting</topic><topic>Hydrogels</topic><topic>Kinases</topic><topic>Mass spectrometry</topic><topic>Materials science</topic><topic>Parkinson's disease</topic><topic>Stem cells</topic><topic>Thymidine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Law, Kevin C. L.</creatorcontrib><creatorcontrib>Mahmoudi, Negar</creatorcontrib><creatorcontrib>Zadeh, Zahra E.</creatorcontrib><creatorcontrib>Williams, Richard. J.</creatorcontrib><creatorcontrib>Hunt, Cameron P. J.</creatorcontrib><creatorcontrib>Nagy, Andras</creatorcontrib><creatorcontrib>Thompson, Lachlan H.</creatorcontrib><creatorcontrib>Nisbet, David R.</creatorcontrib><creatorcontrib>Parish, Clare L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Law, Kevin C. L.</au><au>Mahmoudi, Negar</au><au>Zadeh, Zahra E.</au><au>Williams, Richard. J.</au><au>Hunt, Cameron P. J.</au><au>Nagy, Andras</au><au>Thompson, Lachlan H.</au><au>Nisbet, David R.</au><au>Parish, Clare L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Selective, Hydrogel‐Based Prodrug Delivery System Efficiently Activates a Suicide Gene to Remove Undifferentiated Human Stem Cells Within Neural Grafts</atitle><jtitle>Advanced functional materials</jtitle><date>2023-10-18</date><risdate>2023</risdate><volume>33</volume><issue>43</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The directed differentiation of human pluripotent stem cells (hPSCs) into defined populations has advanced regenerative medicine, especially for Parkinson's disease where clinical trials are underway. Despite this, tumorigenic risks associated with incompletely patterned and/or quiescent proliferative cells within grafts remain. Addressing this, donor stem cells carrying the suicide gene, thymidine kinase (activated by the prodrug ganciclovir, GCV), are employed to enable the programmed ablation of proliferative cells within neural grafts. However, coinciding the short half‐life of GCV with the short S‐phase of neural progenitors is a key challenge. To overcome this, a smart hydrogel delivery matrix is fabricatedto prolong GCV presentation. Following matrix embedment, GCV retains its functionality, demonstrated by ablation of hPSCs and proliferating neural progenitors in vitro. A prolonged GCV release is measured by mass spectrometry following the injection of a GCV‐functionalized hydrogel into mouse brains. Compared to suboptimal, daily systemic GCV injections, the intracerebral delivery of the functionalized hydrogel, as a “one‐off treatment”, reduce proliferative cells in both hPSC‐derived teratomas and neural grafts, without affecting the graft's functional unit (i.e., neurons). It is demonstrated that a functionalized biomaterial can enhance prodrug delivery and address safety concerns associated with the use of hPSCs for brain repair.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202305771</doi><orcidid>https://orcid.org/0000-0002-1343-0769</orcidid><orcidid>https://orcid.org/0000-0001-6652-0445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-10, Vol.33 (43)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2878221015
source Wiley Online Library Journals Frontfile Complete
subjects Ablation
Biomedical materials
Grafting
Hydrogels
Kinases
Mass spectrometry
Materials science
Parkinson's disease
Stem cells
Thymidine
title A Selective, Hydrogel‐Based Prodrug Delivery System Efficiently Activates a Suicide Gene to Remove Undifferentiated Human Stem Cells Within Neural Grafts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Selective,%20Hydrogel%E2%80%90Based%20Prodrug%20Delivery%20System%20Efficiently%20Activates%20a%20Suicide%20Gene%20to%20Remove%20Undifferentiated%20Human%20Stem%20Cells%20Within%20Neural%20Grafts&rft.jtitle=Advanced%20functional%20materials&rft.au=Law,%20Kevin%20C.%20L.&rft.date=2023-10-18&rft.volume=33&rft.issue=43&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202305771&rft_dat=%3Cproquest_cross%3E2878221015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878221015&rft_id=info:pmid/&rfr_iscdi=true