Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages
Social media messages posted by people during natural disasters often contain important location descriptions, such as the locations of victims. Recent research has shown that many of these location descriptions go beyond simple place names, such as city names and street names, and are difficult to...
Gespeichert in:
Veröffentlicht in: | International journal of geographical information science : IJGIS 2023-11, Vol.37 (11), p.2289-2318 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2318 |
---|---|
container_issue | 11 |
container_start_page | 2289 |
container_title | International journal of geographical information science : IJGIS |
container_volume | 37 |
creator | Hu, Yingjie Mai, Gengchen Cundy, Chris Choi, Kristy Lao, Ni Liu, Wei Lakhanpal, Gaurish Zhou, Ryan Zhenqi Joseph, Kenneth |
description | Social media messages posted by people during natural disasters often contain important location descriptions, such as the locations of victims. Recent research has shown that many of these location descriptions go beyond simple place names, such as city names and street names, and are difficult to extract using typical named entity recognition (NER) tools. While advanced machine learning models could be trained, they require large labeled training datasets that can be time-consuming and labor-intensive to create. In this work, we propose a method that fuses geo-knowledge of location descriptions and a Generative Pre-trained Transformer (GPT) model, such as ChatGPT and GPT-4. The result is a geo-knowledge-guided GPT model that can accurately extract location descriptions from disaster-related social media messages. Also, only 22 training examples encoding geo-knowledge are used in our method. We conduct experiments to compare this method with nine alternative approaches on a dataset of tweets from Hurricane Harvey. Our method demonstrates an over 40% improvement over typically used NER approaches. The experiment results also show that geo-knowledge is indispensable for guiding the behavior of GPT models. The extracted location descriptions can help disaster responders reach victims more quickly and may even save lives. |
doi_str_mv | 10.1080/13658816.2023.2266495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878162355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878162355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-238fe55a2439b0a8809026ea4188babf84f590100ebb414b2b7bbd7fcdfbcd7a3</originalsourceid><addsrcrecordid>eNp9kFFPwyAUhRujiUb9CSYkPndSWlr6pll0mizRh_lMLnCZaFsmdE7jn5e5-eoLnJBzzr18WXZR0ElBBb0qypoLUdQTRlk5Yayuq5YfZCfpneUlFc3hr-b51nScncfoVHKKVoiGn2TfM_T52-A3HZol5su1M2jI7GlBem-wi8T1q-A_kIwvSPBzDKBH5wfiLem8hl9tMOrgVlsdiQ2-J8ZFiCOGPGAHYyqMXjvoSI_GQTpjhCXGs-zIQhfxfH-fZs93t4vpfT5_nD1Mb-a5LgUf87SsRc6BVWWrKAhBW8pqhKoQQoGyorK8pQWlqFRVVIqpRinTWG2s0qaB8jS73PWmn7yvMY7y1a_DkEZKJpqEhZWcJxffuXTwMQa0chVcD-FLFlRuUcs_1HKLWu5Rp9z1LucG60MPGx86I0f46nywAQbtoiz_r_gBzpyIJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878162355</pqid></control><display><type>article</type><title>Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages</title><source>Taylor & Francis</source><source>Alma/SFX Local Collection</source><creator>Hu, Yingjie ; Mai, Gengchen ; Cundy, Chris ; Choi, Kristy ; Lao, Ni ; Liu, Wei ; Lakhanpal, Gaurish ; Zhou, Ryan Zhenqi ; Joseph, Kenneth</creator><creatorcontrib>Hu, Yingjie ; Mai, Gengchen ; Cundy, Chris ; Choi, Kristy ; Lao, Ni ; Liu, Wei ; Lakhanpal, Gaurish ; Zhou, Ryan Zhenqi ; Joseph, Kenneth</creatorcontrib><description>Social media messages posted by people during natural disasters often contain important location descriptions, such as the locations of victims. Recent research has shown that many of these location descriptions go beyond simple place names, such as city names and street names, and are difficult to extract using typical named entity recognition (NER) tools. While advanced machine learning models could be trained, they require large labeled training datasets that can be time-consuming and labor-intensive to create. In this work, we propose a method that fuses geo-knowledge of location descriptions and a Generative Pre-trained Transformer (GPT) model, such as ChatGPT and GPT-4. The result is a geo-knowledge-guided GPT model that can accurately extract location descriptions from disaster-related social media messages. Also, only 22 training examples encoding geo-knowledge are used in our method. We conduct experiments to compare this method with nine alternative approaches on a dataset of tweets from Hurricane Harvey. Our method demonstrates an over 40% improvement over typically used NER approaches. The experiment results also show that geo-knowledge is indispensable for guiding the behavior of GPT models. The extracted location descriptions can help disaster responders reach victims more quickly and may even save lives.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2023.2266495</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Datasets ; Descriptions ; Digital media ; disaster ; Disasters ; GeoAI ; GPT ; Hurricanes ; Location description ; Machine learning ; Messages ; Natural disasters ; social media ; Social networks ; Training</subject><ispartof>International journal of geographical information science : IJGIS, 2023-11, Vol.37 (11), p.2289-2318</ispartof><rights>2023 Informa UK Limited, trading as Taylor & Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-238fe55a2439b0a8809026ea4188babf84f590100ebb414b2b7bbd7fcdfbcd7a3</citedby><cites>FETCH-LOGICAL-c385t-238fe55a2439b0a8809026ea4188babf84f590100ebb414b2b7bbd7fcdfbcd7a3</cites><orcidid>0000-0002-5515-4125 ; 0000-0002-7818-7309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2023.2266495$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2023.2266495$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Hu, Yingjie</creatorcontrib><creatorcontrib>Mai, Gengchen</creatorcontrib><creatorcontrib>Cundy, Chris</creatorcontrib><creatorcontrib>Choi, Kristy</creatorcontrib><creatorcontrib>Lao, Ni</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lakhanpal, Gaurish</creatorcontrib><creatorcontrib>Zhou, Ryan Zhenqi</creatorcontrib><creatorcontrib>Joseph, Kenneth</creatorcontrib><title>Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages</title><title>International journal of geographical information science : IJGIS</title><description>Social media messages posted by people during natural disasters often contain important location descriptions, such as the locations of victims. Recent research has shown that many of these location descriptions go beyond simple place names, such as city names and street names, and are difficult to extract using typical named entity recognition (NER) tools. While advanced machine learning models could be trained, they require large labeled training datasets that can be time-consuming and labor-intensive to create. In this work, we propose a method that fuses geo-knowledge of location descriptions and a Generative Pre-trained Transformer (GPT) model, such as ChatGPT and GPT-4. The result is a geo-knowledge-guided GPT model that can accurately extract location descriptions from disaster-related social media messages. Also, only 22 training examples encoding geo-knowledge are used in our method. We conduct experiments to compare this method with nine alternative approaches on a dataset of tweets from Hurricane Harvey. Our method demonstrates an over 40% improvement over typically used NER approaches. The experiment results also show that geo-knowledge is indispensable for guiding the behavior of GPT models. The extracted location descriptions can help disaster responders reach victims more quickly and may even save lives.</description><subject>Datasets</subject><subject>Descriptions</subject><subject>Digital media</subject><subject>disaster</subject><subject>Disasters</subject><subject>GeoAI</subject><subject>GPT</subject><subject>Hurricanes</subject><subject>Location description</subject><subject>Machine learning</subject><subject>Messages</subject><subject>Natural disasters</subject><subject>social media</subject><subject>Social networks</subject><subject>Training</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFFPwyAUhRujiUb9CSYkPndSWlr6pll0mizRh_lMLnCZaFsmdE7jn5e5-eoLnJBzzr18WXZR0ElBBb0qypoLUdQTRlk5Yayuq5YfZCfpneUlFc3hr-b51nScncfoVHKKVoiGn2TfM_T52-A3HZol5su1M2jI7GlBem-wi8T1q-A_kIwvSPBzDKBH5wfiLem8hl9tMOrgVlsdiQ2-J8ZFiCOGPGAHYyqMXjvoSI_GQTpjhCXGs-zIQhfxfH-fZs93t4vpfT5_nD1Mb-a5LgUf87SsRc6BVWWrKAhBW8pqhKoQQoGyorK8pQWlqFRVVIqpRinTWG2s0qaB8jS73PWmn7yvMY7y1a_DkEZKJpqEhZWcJxffuXTwMQa0chVcD-FLFlRuUcs_1HKLWu5Rp9z1LucG60MPGx86I0f46nywAQbtoiz_r_gBzpyIJA</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Hu, Yingjie</creator><creator>Mai, Gengchen</creator><creator>Cundy, Chris</creator><creator>Choi, Kristy</creator><creator>Lao, Ni</creator><creator>Liu, Wei</creator><creator>Lakhanpal, Gaurish</creator><creator>Zhou, Ryan Zhenqi</creator><creator>Joseph, Kenneth</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5515-4125</orcidid><orcidid>https://orcid.org/0000-0002-7818-7309</orcidid></search><sort><creationdate>20231102</creationdate><title>Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages</title><author>Hu, Yingjie ; Mai, Gengchen ; Cundy, Chris ; Choi, Kristy ; Lao, Ni ; Liu, Wei ; Lakhanpal, Gaurish ; Zhou, Ryan Zhenqi ; Joseph, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-238fe55a2439b0a8809026ea4188babf84f590100ebb414b2b7bbd7fcdfbcd7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>Descriptions</topic><topic>Digital media</topic><topic>disaster</topic><topic>Disasters</topic><topic>GeoAI</topic><topic>GPT</topic><topic>Hurricanes</topic><topic>Location description</topic><topic>Machine learning</topic><topic>Messages</topic><topic>Natural disasters</topic><topic>social media</topic><topic>Social networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yingjie</creatorcontrib><creatorcontrib>Mai, Gengchen</creatorcontrib><creatorcontrib>Cundy, Chris</creatorcontrib><creatorcontrib>Choi, Kristy</creatorcontrib><creatorcontrib>Lao, Ni</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lakhanpal, Gaurish</creatorcontrib><creatorcontrib>Zhou, Ryan Zhenqi</creatorcontrib><creatorcontrib>Joseph, Kenneth</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yingjie</au><au>Mai, Gengchen</au><au>Cundy, Chris</au><au>Choi, Kristy</au><au>Lao, Ni</au><au>Liu, Wei</au><au>Lakhanpal, Gaurish</au><au>Zhou, Ryan Zhenqi</au><au>Joseph, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2023-11-02</date><risdate>2023</risdate><volume>37</volume><issue>11</issue><spage>2289</spage><epage>2318</epage><pages>2289-2318</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>Social media messages posted by people during natural disasters often contain important location descriptions, such as the locations of victims. Recent research has shown that many of these location descriptions go beyond simple place names, such as city names and street names, and are difficult to extract using typical named entity recognition (NER) tools. While advanced machine learning models could be trained, they require large labeled training datasets that can be time-consuming and labor-intensive to create. In this work, we propose a method that fuses geo-knowledge of location descriptions and a Generative Pre-trained Transformer (GPT) model, such as ChatGPT and GPT-4. The result is a geo-knowledge-guided GPT model that can accurately extract location descriptions from disaster-related social media messages. Also, only 22 training examples encoding geo-knowledge are used in our method. We conduct experiments to compare this method with nine alternative approaches on a dataset of tweets from Hurricane Harvey. Our method demonstrates an over 40% improvement over typically used NER approaches. The experiment results also show that geo-knowledge is indispensable for guiding the behavior of GPT models. The extracted location descriptions can help disaster responders reach victims more quickly and may even save lives.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/13658816.2023.2266495</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-5515-4125</orcidid><orcidid>https://orcid.org/0000-0002-7818-7309</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8816 |
ispartof | International journal of geographical information science : IJGIS, 2023-11, Vol.37 (11), p.2289-2318 |
issn | 1365-8816 1362-3087 1365-8824 |
language | eng |
recordid | cdi_proquest_journals_2878162355 |
source | Taylor & Francis; Alma/SFX Local Collection |
subjects | Datasets Descriptions Digital media disaster Disasters GeoAI GPT Hurricanes Location description Machine learning Messages Natural disasters social media Social networks Training |
title | Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geo-knowledge-guided%20GPT%20models%20improve%20the%20extraction%20of%20location%20descriptions%20from%20disaster-related%20social%20media%20messages&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Hu,%20Yingjie&rft.date=2023-11-02&rft.volume=37&rft.issue=11&rft.spage=2289&rft.epage=2318&rft.pages=2289-2318&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2023.2266495&rft_dat=%3Cproquest_cross%3E2878162355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878162355&rft_id=info:pmid/&rfr_iscdi=true |