Range reshuffling: Climate change, invasive species, and the case of Nothofagus forests in Aotearoa New Zealand

AimThe impact of climate change on forest biodiversity and ecosystem services will be partly determined by the relative fortunes of invasive and native forest trees under future conditions. Aotearoa New Zealand has high conservation value native forests and one of the world's worst invasive tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diversity & distributions 2023-11, Vol.29 (11), p.1402-1419
Hauptverfasser: Mathias, Shar, van Galen, Laura G., Jarvie, Scott, Larcombe, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AimThe impact of climate change on forest biodiversity and ecosystem services will be partly determined by the relative fortunes of invasive and native forest trees under future conditions. Aotearoa New Zealand has high conservation value native forests and one of the world's worst invasive tree problems. We assess the relative effects of habitat redistribution on native Nothofagus and invasive conifer (Pinaceae) species in New Zealand as a case study on the compounding impacts of climate change and tree invasions.LocationAotearoa New Zealand.MethodsWe use species distribution models (SDMs) to predict the current and future distribution of habitat for five native Nothofagus species and 13 invasive conifer species under two 2070 climate scenarios. We calculate habitat loss/gain for all species and examine overlap between the invasive and native species now and in future.ResultsMost species will lose habitat overall. The native species saw large changes in the distribution of habitat with extensive losses in North Island and gains mostly in South Island. Concerningly, we found that most new habitat for Nothofagus was also suitable for at least one invasive species. However, there were refugia for the native species in the wetter parts of the climate space.Main ConclusionIf the predicted changes in habitat distribution translate to shifts in forest distribution, it would cause widespread ecological disruption. We discuss how acclimation, adaptation and biotic interactions may prevent/delay some changes. But we also highlight that the poor establishment capacity of Nothofagus, and the contrasting ability of the conifers to invade, will present persistent conservation challenges in areas of both new habitat and forest retreat. Pinaceae are problematic invaders globally, and our results highlight that control of invasions and active native forest restoration will likely be key to managing forest biodiversity under future climates.
ISSN:1366-9516
1472-4642
DOI:10.1111/ddi.13767