Hyper‐heuristic method for processor allocation in parallel tasks scheduling

Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multipr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2023-11, Vol.35 (24)
Hauptverfasser: Yıldız, Gülçin, Sevilgen, Fatih Erdoğan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Concurrency and computation
container_volume 35
creator Yıldız, Gülçin
Sevilgen, Fatih Erdoğan
description Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multiprocessor systems problem is NP‐Hard even for applications involving pure task parallelism. The problem becomes more difficult when data parallelism is also taken into consideration. These problems usually considered in two steps, processor allocation and task scheduling, and various algorithms have been proposed. In this study, we introduce a genetic algorithm based hyper‐heuristic approach for the processor allocation problem. Experimental results indicate that the algorithm provides better performance compared to various greedy algorithms.
doi_str_mv 10.1002/cpe.7757
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877616489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877616489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-6c7e65f0f64275527ac6dcfd3fd6383911b240565210acfc8efa2bc65d4ec4e43</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKvgIwTcuJma_0yXUtQKRTe6DumdGzt1OhmTmYU7H8Fn9EmcUnF1D5fDOYePkEvOZpwxcQMdzqzV9ohMuJaiYEaq438tzCk5y3nLGOdM8gl5Wn52mH6-vjc4pDr3NdAd9ptY0RAT7VIEzHlUvmki-L6OLa1b2vk0PrChvc_vmWbYYDU0dft2Tk6CbzJe_N0peb2_e1ksi9Xzw-PidlWA0LovDFg0OrBglLBaC-vBVBAqGSojSznnfC0U00YLzjwEKDF4sQajK4WgUMkpuTrkjgs_Bsy928YhtWOlE6W1hhtVzkfX9cEFKeacMLgu1TufPh1nbk_LjbTcnpb8BdVUXtU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877616489</pqid></control><display><type>article</type><title>Hyper‐heuristic method for processor allocation in parallel tasks scheduling</title><source>Wiley Online Library All Journals</source><creator>Yıldız, Gülçin ; Sevilgen, Fatih Erdoğan</creator><creatorcontrib>Yıldız, Gülçin ; Sevilgen, Fatih Erdoğan</creatorcontrib><description>Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multiprocessor systems problem is NP‐Hard even for applications involving pure task parallelism. The problem becomes more difficult when data parallelism is also taken into consideration. These problems usually considered in two steps, processor allocation and task scheduling, and various algorithms have been proposed. In this study, we introduce a genetic algorithm based hyper‐heuristic approach for the processor allocation problem. Experimental results indicate that the algorithm provides better performance compared to various greedy algorithms.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.7757</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Genetic algorithms ; Greedy algorithms ; Heuristic methods ; Microprocessors ; Multiprocessing ; Parallel processing ; Resource utilization ; Task scheduling</subject><ispartof>Concurrency and computation, 2023-11, Vol.35 (24)</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-6c7e65f0f64275527ac6dcfd3fd6383911b240565210acfc8efa2bc65d4ec4e43</citedby><cites>FETCH-LOGICAL-c255t-6c7e65f0f64275527ac6dcfd3fd6383911b240565210acfc8efa2bc65d4ec4e43</cites><orcidid>0000-0001-8004-6700 ; 0000-0001-7218-0037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yıldız, Gülçin</creatorcontrib><creatorcontrib>Sevilgen, Fatih Erdoğan</creatorcontrib><title>Hyper‐heuristic method for processor allocation in parallel tasks scheduling</title><title>Concurrency and computation</title><description>Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multiprocessor systems problem is NP‐Hard even for applications involving pure task parallelism. The problem becomes more difficult when data parallelism is also taken into consideration. These problems usually considered in two steps, processor allocation and task scheduling, and various algorithms have been proposed. In this study, we introduce a genetic algorithm based hyper‐heuristic approach for the processor allocation problem. Experimental results indicate that the algorithm provides better performance compared to various greedy algorithms.</description><subject>Genetic algorithms</subject><subject>Greedy algorithms</subject><subject>Heuristic methods</subject><subject>Microprocessors</subject><subject>Multiprocessing</subject><subject>Parallel processing</subject><subject>Resource utilization</subject><subject>Task scheduling</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKvgIwTcuJma_0yXUtQKRTe6DumdGzt1OhmTmYU7H8Fn9EmcUnF1D5fDOYePkEvOZpwxcQMdzqzV9ohMuJaiYEaq438tzCk5y3nLGOdM8gl5Wn52mH6-vjc4pDr3NdAd9ptY0RAT7VIEzHlUvmki-L6OLa1b2vk0PrChvc_vmWbYYDU0dft2Tk6CbzJe_N0peb2_e1ksi9Xzw-PidlWA0LovDFg0OrBglLBaC-vBVBAqGSojSznnfC0U00YLzjwEKDF4sQajK4WgUMkpuTrkjgs_Bsy928YhtWOlE6W1hhtVzkfX9cEFKeacMLgu1TufPh1nbk_LjbTcnpb8BdVUXtU</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Yıldız, Gülçin</creator><creator>Sevilgen, Fatih Erdoğan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8004-6700</orcidid><orcidid>https://orcid.org/0000-0001-7218-0037</orcidid></search><sort><creationdate>202311</creationdate><title>Hyper‐heuristic method for processor allocation in parallel tasks scheduling</title><author>Yıldız, Gülçin ; Sevilgen, Fatih Erdoğan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-6c7e65f0f64275527ac6dcfd3fd6383911b240565210acfc8efa2bc65d4ec4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Genetic algorithms</topic><topic>Greedy algorithms</topic><topic>Heuristic methods</topic><topic>Microprocessors</topic><topic>Multiprocessing</topic><topic>Parallel processing</topic><topic>Resource utilization</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yıldız, Gülçin</creatorcontrib><creatorcontrib>Sevilgen, Fatih Erdoğan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yıldız, Gülçin</au><au>Sevilgen, Fatih Erdoğan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyper‐heuristic method for processor allocation in parallel tasks scheduling</atitle><jtitle>Concurrency and computation</jtitle><date>2023-11</date><risdate>2023</risdate><volume>35</volume><issue>24</issue><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multiprocessor systems problem is NP‐Hard even for applications involving pure task parallelism. The problem becomes more difficult when data parallelism is also taken into consideration. These problems usually considered in two steps, processor allocation and task scheduling, and various algorithms have been proposed. In this study, we introduce a genetic algorithm based hyper‐heuristic approach for the processor allocation problem. Experimental results indicate that the algorithm provides better performance compared to various greedy algorithms.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.7757</doi><orcidid>https://orcid.org/0000-0001-8004-6700</orcidid><orcidid>https://orcid.org/0000-0001-7218-0037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2023-11, Vol.35 (24)
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2877616489
source Wiley Online Library All Journals
subjects Genetic algorithms
Greedy algorithms
Heuristic methods
Microprocessors
Multiprocessing
Parallel processing
Resource utilization
Task scheduling
title Hyper‐heuristic method for processor allocation in parallel tasks scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyper%E2%80%90heuristic%20method%20for%20processor%20allocation%20in%20parallel%20tasks%20scheduling&rft.jtitle=Concurrency%20and%20computation&rft.au=Y%C4%B1ld%C4%B1z,%20G%C3%BCl%C3%A7in&rft.date=2023-11&rft.volume=35&rft.issue=24&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.7757&rft_dat=%3Cproquest_cross%3E2877616489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877616489&rft_id=info:pmid/&rfr_iscdi=true