Hyper‐heuristic method for processor allocation in parallel tasks scheduling
Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multipr...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2023-11, Vol.35 (24) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 35 |
creator | Yıldız, Gülçin Sevilgen, Fatih Erdoğan |
description | Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multiprocessor systems problem is NP‐Hard even for applications involving pure task parallelism. The problem becomes more difficult when data parallelism is also taken into consideration. These problems usually considered in two steps, processor allocation and task scheduling, and various algorithms have been proposed. In this study, we introduce a genetic algorithm based hyper‐heuristic approach for the processor allocation problem. Experimental results indicate that the algorithm provides better performance compared to various greedy algorithms. |
doi_str_mv | 10.1002/cpe.7757 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877616489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877616489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-6c7e65f0f64275527ac6dcfd3fd6383911b240565210acfc8efa2bc65d4ec4e43</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKvgIwTcuJma_0yXUtQKRTe6DumdGzt1OhmTmYU7H8Fn9EmcUnF1D5fDOYePkEvOZpwxcQMdzqzV9ohMuJaiYEaq438tzCk5y3nLGOdM8gl5Wn52mH6-vjc4pDr3NdAd9ptY0RAT7VIEzHlUvmki-L6OLa1b2vk0PrChvc_vmWbYYDU0dft2Tk6CbzJe_N0peb2_e1ksi9Xzw-PidlWA0LovDFg0OrBglLBaC-vBVBAqGSojSznnfC0U00YLzjwEKDF4sQajK4WgUMkpuTrkjgs_Bsy928YhtWOlE6W1hhtVzkfX9cEFKeacMLgu1TufPh1nbk_LjbTcnpb8BdVUXtU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877616489</pqid></control><display><type>article</type><title>Hyper‐heuristic method for processor allocation in parallel tasks scheduling</title><source>Wiley Online Library All Journals</source><creator>Yıldız, Gülçin ; Sevilgen, Fatih Erdoğan</creator><creatorcontrib>Yıldız, Gülçin ; Sevilgen, Fatih Erdoğan</creatorcontrib><description>Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multiprocessor systems problem is NP‐Hard even for applications involving pure task parallelism. The problem becomes more difficult when data parallelism is also taken into consideration. These problems usually considered in two steps, processor allocation and task scheduling, and various algorithms have been proposed. In this study, we introduce a genetic algorithm based hyper‐heuristic approach for the processor allocation problem. Experimental results indicate that the algorithm provides better performance compared to various greedy algorithms.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.7757</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Genetic algorithms ; Greedy algorithms ; Heuristic methods ; Microprocessors ; Multiprocessing ; Parallel processing ; Resource utilization ; Task scheduling</subject><ispartof>Concurrency and computation, 2023-11, Vol.35 (24)</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-6c7e65f0f64275527ac6dcfd3fd6383911b240565210acfc8efa2bc65d4ec4e43</citedby><cites>FETCH-LOGICAL-c255t-6c7e65f0f64275527ac6dcfd3fd6383911b240565210acfc8efa2bc65d4ec4e43</cites><orcidid>0000-0001-8004-6700 ; 0000-0001-7218-0037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yıldız, Gülçin</creatorcontrib><creatorcontrib>Sevilgen, Fatih Erdoğan</creatorcontrib><title>Hyper‐heuristic method for processor allocation in parallel tasks scheduling</title><title>Concurrency and computation</title><description>Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multiprocessor systems problem is NP‐Hard even for applications involving pure task parallelism. The problem becomes more difficult when data parallelism is also taken into consideration. These problems usually considered in two steps, processor allocation and task scheduling, and various algorithms have been proposed. In this study, we introduce a genetic algorithm based hyper‐heuristic approach for the processor allocation problem. Experimental results indicate that the algorithm provides better performance compared to various greedy algorithms.</description><subject>Genetic algorithms</subject><subject>Greedy algorithms</subject><subject>Heuristic methods</subject><subject>Microprocessors</subject><subject>Multiprocessing</subject><subject>Parallel processing</subject><subject>Resource utilization</subject><subject>Task scheduling</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKvgIwTcuJma_0yXUtQKRTe6DumdGzt1OhmTmYU7H8Fn9EmcUnF1D5fDOYePkEvOZpwxcQMdzqzV9ohMuJaiYEaq438tzCk5y3nLGOdM8gl5Wn52mH6-vjc4pDr3NdAd9ptY0RAT7VIEzHlUvmki-L6OLa1b2vk0PrChvc_vmWbYYDU0dft2Tk6CbzJe_N0peb2_e1ksi9Xzw-PidlWA0LovDFg0OrBglLBaC-vBVBAqGSojSznnfC0U00YLzjwEKDF4sQajK4WgUMkpuTrkjgs_Bsy928YhtWOlE6W1hhtVzkfX9cEFKeacMLgu1TufPh1nbk_LjbTcnpb8BdVUXtU</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Yıldız, Gülçin</creator><creator>Sevilgen, Fatih Erdoğan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8004-6700</orcidid><orcidid>https://orcid.org/0000-0001-7218-0037</orcidid></search><sort><creationdate>202311</creationdate><title>Hyper‐heuristic method for processor allocation in parallel tasks scheduling</title><author>Yıldız, Gülçin ; Sevilgen, Fatih Erdoğan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-6c7e65f0f64275527ac6dcfd3fd6383911b240565210acfc8efa2bc65d4ec4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Genetic algorithms</topic><topic>Greedy algorithms</topic><topic>Heuristic methods</topic><topic>Microprocessors</topic><topic>Multiprocessing</topic><topic>Parallel processing</topic><topic>Resource utilization</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yıldız, Gülçin</creatorcontrib><creatorcontrib>Sevilgen, Fatih Erdoğan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yıldız, Gülçin</au><au>Sevilgen, Fatih Erdoğan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyper‐heuristic method for processor allocation in parallel tasks scheduling</atitle><jtitle>Concurrency and computation</jtitle><date>2023-11</date><risdate>2023</risdate><volume>35</volume><issue>24</issue><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Scheduling the tasks of parallel scientific applications is very important for efficient utilization of resources and reducing the overall execution time (makespan). Parallel applications typically include both data parallelism and task parallelism. It is known that the scheduling problem on multiprocessor systems problem is NP‐Hard even for applications involving pure task parallelism. The problem becomes more difficult when data parallelism is also taken into consideration. These problems usually considered in two steps, processor allocation and task scheduling, and various algorithms have been proposed. In this study, we introduce a genetic algorithm based hyper‐heuristic approach for the processor allocation problem. Experimental results indicate that the algorithm provides better performance compared to various greedy algorithms.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.7757</doi><orcidid>https://orcid.org/0000-0001-8004-6700</orcidid><orcidid>https://orcid.org/0000-0001-7218-0037</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2023-11, Vol.35 (24) |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2877616489 |
source | Wiley Online Library All Journals |
subjects | Genetic algorithms Greedy algorithms Heuristic methods Microprocessors Multiprocessing Parallel processing Resource utilization Task scheduling |
title | Hyper‐heuristic method for processor allocation in parallel tasks scheduling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyper%E2%80%90heuristic%20method%20for%20processor%20allocation%20in%20parallel%20tasks%20scheduling&rft.jtitle=Concurrency%20and%20computation&rft.au=Y%C4%B1ld%C4%B1z,%20G%C3%BCl%C3%A7in&rft.date=2023-11&rft.volume=35&rft.issue=24&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.7757&rft_dat=%3Cproquest_cross%3E2877616489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877616489&rft_id=info:pmid/&rfr_iscdi=true |