General solutions of the plume equations: towards synthetic plumes and fountains
Previous mathematical models of quasi-steady turbulent plumes and fountains have described the flow that results from a prescribed input of buoyancy. We offer a new perspective by asking, what input of buoyancy would give rise to a plume, or fountain, with given properties? Addressing this question...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-10, Vol.973, Article R2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 973 |
creator | Wise, Nick H. Hunt, Gary R. |
description | Previous mathematical models of quasi-steady turbulent plumes and fountains have described the flow that results from a prescribed input of buoyancy. We offer a new perspective by asking, what input of buoyancy would give rise to a plume, or fountain, with given properties? Addressing this question by means of an analytical framework, we take a first step toward enabling a plume with specific characteristics, i.e. a synthetic plume, to be designed. We develop analytical solutions to the conservation equations that describe four kinds of turbulent flow: axisymmetric plume, starting fountain, line plume and wall plume. Crucially, our solutions do not require the buoyancy distribution to be specified, whether this be the source or off-source distribution. Key to our approach, we specify a function for the volume flux, $Q=f(z)$, and take advantage of the weak coupling between the conservation equations to uniquely express general solutions in terms of $f$. We show that any analytic function $f$ can form the basis for a set of solutions for the fluxes, local variables and local Richardson number, though $f/({\rm d}f/{\rm d}z)>0$ is a necessary condition for physically realistic solutions. As an example of plume synthesis, we show that an axisymmetric plume can have an invariant radius if there is an exponentially increasing input of buoyancy to the plume centreline. We also consider how plume synthesis could be achieved practically. |
doi_str_mv | 10.1017/jfm.2023.784 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877526402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_784</cupid><sourcerecordid>2877526402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9075ca9f95636895f5fd7fcbbf9aeb2832b1f23901803f91c0ddf9d811d8f6e33</originalsourceid><addsrcrecordid>eNptkEFLwzAUx4MoOKc3P0DAq60vSds03mToFAZ60HNIm0Q72mRLUmTf3s4NvHh68N7v_3_wQ-iaQE6A8Lu1HXIKlOW8Lk7QjBSVyHhVlKdoBkBpRgiFc3QR4xqAMBB8ht6Wxpmgehx9P6bOu4i9xenL4E0_Dgab7ah-1_c4-W8VdMRx56Z76toDErFyGls_uqQ6Fy_RmVV9NFfHOUcfT4_vi-ds9bp8WTysspYVkDIBvGyVsKKsWFWL0pZWc9s2jRXKNLRmtCGWMgGkBmYFaUFrK3RNiK5tZRibo5tD7yb47Whikms_Bje9lLTmvKRVMZmYo9sD1QYfYzBWbkI3qLCTBOTemZycyb0zOTmb8PyIq6EJnf40f63_Bn4AHkZvWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877526402</pqid></control><display><type>article</type><title>General solutions of the plume equations: towards synthetic plumes and fountains</title><source>Cambridge University Press Journals Complete</source><creator>Wise, Nick H. ; Hunt, Gary R.</creator><creatorcontrib>Wise, Nick H. ; Hunt, Gary R.</creatorcontrib><description>Previous mathematical models of quasi-steady turbulent plumes and fountains have described the flow that results from a prescribed input of buoyancy. We offer a new perspective by asking, what input of buoyancy would give rise to a plume, or fountain, with given properties? Addressing this question by means of an analytical framework, we take a first step toward enabling a plume with specific characteristics, i.e. a synthetic plume, to be designed. We develop analytical solutions to the conservation equations that describe four kinds of turbulent flow: axisymmetric plume, starting fountain, line plume and wall plume. Crucially, our solutions do not require the buoyancy distribution to be specified, whether this be the source or off-source distribution. Key to our approach, we specify a function for the volume flux, $Q=f(z)$, and take advantage of the weak coupling between the conservation equations to uniquely express general solutions in terms of $f$. We show that any analytic function $f$ can form the basis for a set of solutions for the fluxes, local variables and local Richardson number, though $f/({\rm d}f/{\rm d}z)>0$ is a necessary condition for physically realistic solutions. As an example of plume synthesis, we show that an axisymmetric plume can have an invariant radius if there is an exponentially increasing input of buoyancy to the plume centreline. We also consider how plume synthesis could be achieved practically.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.784</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Analytic functions ; Axisymmetric flow ; Buoyancy ; Conservation equations ; Distribution ; Exact solutions ; Fountains ; Gravity ; JFM Rapids ; Mathematical models ; Ordinary differential equations ; Plumes ; Richardson number ; Synthesis ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2023-10, Vol.973, Article R2</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-9075ca9f95636895f5fd7fcbbf9aeb2832b1f23901803f91c0ddf9d811d8f6e33</citedby><cites>FETCH-LOGICAL-c340t-9075ca9f95636895f5fd7fcbbf9aeb2832b1f23901803f91c0ddf9d811d8f6e33</cites><orcidid>0000-0001-7619-7477 ; 0000-0001-9875-9274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202300784X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Wise, Nick H.</creatorcontrib><creatorcontrib>Hunt, Gary R.</creatorcontrib><title>General solutions of the plume equations: towards synthetic plumes and fountains</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Previous mathematical models of quasi-steady turbulent plumes and fountains have described the flow that results from a prescribed input of buoyancy. We offer a new perspective by asking, what input of buoyancy would give rise to a plume, or fountain, with given properties? Addressing this question by means of an analytical framework, we take a first step toward enabling a plume with specific characteristics, i.e. a synthetic plume, to be designed. We develop analytical solutions to the conservation equations that describe four kinds of turbulent flow: axisymmetric plume, starting fountain, line plume and wall plume. Crucially, our solutions do not require the buoyancy distribution to be specified, whether this be the source or off-source distribution. Key to our approach, we specify a function for the volume flux, $Q=f(z)$, and take advantage of the weak coupling between the conservation equations to uniquely express general solutions in terms of $f$. We show that any analytic function $f$ can form the basis for a set of solutions for the fluxes, local variables and local Richardson number, though $f/({\rm d}f/{\rm d}z)>0$ is a necessary condition for physically realistic solutions. As an example of plume synthesis, we show that an axisymmetric plume can have an invariant radius if there is an exponentially increasing input of buoyancy to the plume centreline. We also consider how plume synthesis could be achieved practically.</description><subject>Analytic functions</subject><subject>Axisymmetric flow</subject><subject>Buoyancy</subject><subject>Conservation equations</subject><subject>Distribution</subject><subject>Exact solutions</subject><subject>Fountains</subject><subject>Gravity</subject><subject>JFM Rapids</subject><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Plumes</subject><subject>Richardson number</subject><subject>Synthesis</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEFLwzAUx4MoOKc3P0DAq60vSds03mToFAZ60HNIm0Q72mRLUmTf3s4NvHh68N7v_3_wQ-iaQE6A8Lu1HXIKlOW8Lk7QjBSVyHhVlKdoBkBpRgiFc3QR4xqAMBB8ht6Wxpmgehx9P6bOu4i9xenL4E0_Dgab7ah-1_c4-W8VdMRx56Z76toDErFyGls_uqQ6Fy_RmVV9NFfHOUcfT4_vi-ds9bp8WTysspYVkDIBvGyVsKKsWFWL0pZWc9s2jRXKNLRmtCGWMgGkBmYFaUFrK3RNiK5tZRibo5tD7yb47Whikms_Bje9lLTmvKRVMZmYo9sD1QYfYzBWbkI3qLCTBOTemZycyb0zOTmb8PyIq6EJnf40f63_Bn4AHkZvWQ</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Wise, Nick H.</creator><creator>Hunt, Gary R.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7619-7477</orcidid><orcidid>https://orcid.org/0000-0001-9875-9274</orcidid></search><sort><creationdate>20231017</creationdate><title>General solutions of the plume equations: towards synthetic plumes and fountains</title><author>Wise, Nick H. ; Hunt, Gary R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9075ca9f95636895f5fd7fcbbf9aeb2832b1f23901803f91c0ddf9d811d8f6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytic functions</topic><topic>Axisymmetric flow</topic><topic>Buoyancy</topic><topic>Conservation equations</topic><topic>Distribution</topic><topic>Exact solutions</topic><topic>Fountains</topic><topic>Gravity</topic><topic>JFM Rapids</topic><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Plumes</topic><topic>Richardson number</topic><topic>Synthesis</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wise, Nick H.</creatorcontrib><creatorcontrib>Hunt, Gary R.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wise, Nick H.</au><au>Hunt, Gary R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General solutions of the plume equations: towards synthetic plumes and fountains</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-10-17</date><risdate>2023</risdate><volume>973</volume><artnum>R2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Previous mathematical models of quasi-steady turbulent plumes and fountains have described the flow that results from a prescribed input of buoyancy. We offer a new perspective by asking, what input of buoyancy would give rise to a plume, or fountain, with given properties? Addressing this question by means of an analytical framework, we take a first step toward enabling a plume with specific characteristics, i.e. a synthetic plume, to be designed. We develop analytical solutions to the conservation equations that describe four kinds of turbulent flow: axisymmetric plume, starting fountain, line plume and wall plume. Crucially, our solutions do not require the buoyancy distribution to be specified, whether this be the source or off-source distribution. Key to our approach, we specify a function for the volume flux, $Q=f(z)$, and take advantage of the weak coupling between the conservation equations to uniquely express general solutions in terms of $f$. We show that any analytic function $f$ can form the basis for a set of solutions for the fluxes, local variables and local Richardson number, though $f/({\rm d}f/{\rm d}z)>0$ is a necessary condition for physically realistic solutions. As an example of plume synthesis, we show that an axisymmetric plume can have an invariant radius if there is an exponentially increasing input of buoyancy to the plume centreline. We also consider how plume synthesis could be achieved practically.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.784</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7619-7477</orcidid><orcidid>https://orcid.org/0000-0001-9875-9274</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2023-10, Vol.973, Article R2 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2877526402 |
source | Cambridge University Press Journals Complete |
subjects | Analytic functions Axisymmetric flow Buoyancy Conservation equations Distribution Exact solutions Fountains Gravity JFM Rapids Mathematical models Ordinary differential equations Plumes Richardson number Synthesis Turbulent flow |
title | General solutions of the plume equations: towards synthetic plumes and fountains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20solutions%20of%20the%20plume%20equations:%20towards%20synthetic%20plumes%20and%20fountains&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wise,%20Nick%20H.&rft.date=2023-10-17&rft.volume=973&rft.artnum=R2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.784&rft_dat=%3Cproquest_cross%3E2877526402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877526402&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_784&rfr_iscdi=true |