Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression
The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each ite...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2023/09/01, Vol.E106.A(9), pp.1211-1215 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1215 |
---|---|
container_issue | 9 |
container_start_page | 1211 |
container_title | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
container_volume | E106.A |
creator | KIM, Sang Hoon KO, Jong Hwan |
description | The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each iteration generates a fixed size of the bit stream. Therefore, a large number of iterations are required at the high BPP, and fine-grained image quality control is not supported at the low BPP. In this paper, we propose a novel RNN-based image compression model that can schedule the channel size per iteration, to reduce the number of iterations at the high BPP and fine-grained bit-rate control at the low BPP. To further enhance the efficiency, multiple network models for various channel sizes are combined into a single model using the slimmable network architecture. The experimental results show that the proposed method achieves comparable performance to the existing method with finer BPP adjustment, increases parameters by only 0.15% and reduces the average amount of computation by 40.4%. |
doi_str_mv | 10.1587/transfun.2022IML0001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877112463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877112463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-5e730186d4e8b14ae90c5231d22e252f512927c576653440ae1f20405b675ad93</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOKf_gQ8BnzuTNGnaxzqmDuaEqW9CyNLr1tElNWkF_3s75uae7uB-33d3H0K3lIyoSOV967UNZWdHjDA2fZkRQugZGlDJRUTjWJ6jAcloEqWCpJfoKoRND6SM8gH6zAvdtNU34PFaWws1fjNrKLq6sitcOo9zY6AGr9vKWaxtgR8r28POtt7V2JV4MZ9HDzpAgadbvdqNto2HEHr-Gl2Uug5w81eH6ONx8j5-jmavT9NxPosMl6yNBMi4vycpOKRLyjVkxAgW04IxYIKVgrKMSSNkkoiYc6KBloxwIpaJFLrI4iG62_s23n11EFq1cZ23_UrFUikpZTyJe4rvKeNdCB5K1fhqq_2PokTtclSHHNVJjr1ssZdtQtv_dxRp31amhn_RhJJE5So7NCcmR9istVdg41-ni4PS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877112463</pqid></control><display><type>article</type><title>Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression</title><source>J-STAGE Free</source><creator>KIM, Sang Hoon ; KO, Jong Hwan</creator><creatorcontrib>KIM, Sang Hoon ; KO, Jong Hwan</creatorcontrib><description>The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each iteration generates a fixed size of the bit stream. Therefore, a large number of iterations are required at the high BPP, and fine-grained image quality control is not supported at the low BPP. In this paper, we propose a novel RNN-based image compression model that can schedule the channel size per iteration, to reduce the number of iterations at the high BPP and fine-grained bit-rate control at the low BPP. To further enhance the efficiency, multiple network models for various channel sizes are combined into a single model using the slimmable network architecture. The experimental results show that the proposed method achieves comparable performance to the existing method with finer BPP adjustment, increases parameters by only 0.15% and reduces the average amount of computation by 40.4%.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2022IML0001</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>acceleration ; adaptive ; Adaptive control ; channel-scheduling ; Computer architecture ; fine-control ; Image compression ; Image quality ; Iterative methods ; Quality control ; RNN ; Scheduling ; target-dependent</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/09/01, Vol.E106.A(9), pp.1211-1215</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c472t-5e730186d4e8b14ae90c5231d22e252f512927c576653440ae1f20405b675ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27922,27923</link.rule.ids></links><search><creatorcontrib>KIM, Sang Hoon</creatorcontrib><creatorcontrib>KO, Jong Hwan</creatorcontrib><title>Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each iteration generates a fixed size of the bit stream. Therefore, a large number of iterations are required at the high BPP, and fine-grained image quality control is not supported at the low BPP. In this paper, we propose a novel RNN-based image compression model that can schedule the channel size per iteration, to reduce the number of iterations at the high BPP and fine-grained bit-rate control at the low BPP. To further enhance the efficiency, multiple network models for various channel sizes are combined into a single model using the slimmable network architecture. The experimental results show that the proposed method achieves comparable performance to the existing method with finer BPP adjustment, increases parameters by only 0.15% and reduces the average amount of computation by 40.4%.</description><subject>acceleration</subject><subject>adaptive</subject><subject>Adaptive control</subject><subject>channel-scheduling</subject><subject>Computer architecture</subject><subject>fine-control</subject><subject>Image compression</subject><subject>Image quality</subject><subject>Iterative methods</subject><subject>Quality control</subject><subject>RNN</subject><subject>Scheduling</subject><subject>target-dependent</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkNFLwzAQxoMoOKf_gQ8BnzuTNGnaxzqmDuaEqW9CyNLr1tElNWkF_3s75uae7uB-33d3H0K3lIyoSOV967UNZWdHjDA2fZkRQugZGlDJRUTjWJ6jAcloEqWCpJfoKoRND6SM8gH6zAvdtNU34PFaWws1fjNrKLq6sitcOo9zY6AGr9vKWaxtgR8r28POtt7V2JV4MZ9HDzpAgadbvdqNto2HEHr-Gl2Uug5w81eH6ONx8j5-jmavT9NxPosMl6yNBMi4vycpOKRLyjVkxAgW04IxYIKVgrKMSSNkkoiYc6KBloxwIpaJFLrI4iG62_s23n11EFq1cZ23_UrFUikpZTyJe4rvKeNdCB5K1fhqq_2PokTtclSHHNVJjr1ssZdtQtv_dxRp31amhn_RhJJE5So7NCcmR9istVdg41-ni4PS</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>KIM, Sang Hoon</creator><creator>KO, Jong Hwan</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230901</creationdate><title>Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression</title><author>KIM, Sang Hoon ; KO, Jong Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-5e730186d4e8b14ae90c5231d22e252f512927c576653440ae1f20405b675ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acceleration</topic><topic>adaptive</topic><topic>Adaptive control</topic><topic>channel-scheduling</topic><topic>Computer architecture</topic><topic>fine-control</topic><topic>Image compression</topic><topic>Image quality</topic><topic>Iterative methods</topic><topic>Quality control</topic><topic>RNN</topic><topic>Scheduling</topic><topic>target-dependent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, Sang Hoon</creatorcontrib><creatorcontrib>KO, Jong Hwan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, Sang Hoon</au><au>KO, Jong Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>E106.A</volume><issue>9</issue><spage>1211</spage><epage>1215</epage><pages>1211-1215</pages><artnum>2022IML0001</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each iteration generates a fixed size of the bit stream. Therefore, a large number of iterations are required at the high BPP, and fine-grained image quality control is not supported at the low BPP. In this paper, we propose a novel RNN-based image compression model that can schedule the channel size per iteration, to reduce the number of iterations at the high BPP and fine-grained bit-rate control at the low BPP. To further enhance the efficiency, multiple network models for various channel sizes are combined into a single model using the slimmable network architecture. The experimental results show that the proposed method achieves comparable performance to the existing method with finer BPP adjustment, increases parameters by only 0.15% and reduces the average amount of computation by 40.4%.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2022IML0001</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8508 |
ispartof | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/09/01, Vol.E106.A(9), pp.1211-1215 |
issn | 0916-8508 1745-1337 |
language | eng |
recordid | cdi_proquest_journals_2877112463 |
source | J-STAGE Free |
subjects | acceleration adaptive Adaptive control channel-scheduling Computer architecture fine-control Image compression Image quality Iterative methods Quality control RNN Scheduling target-dependent |
title | Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Channel%20Scheduling%20for%20Acceleration%20and%20Fine%20Control%20of%20RNN-Based%20Image%20Compression&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=KIM,%20Sang%20Hoon&rft.date=2023-09-01&rft.volume=E106.A&rft.issue=9&rft.spage=1211&rft.epage=1215&rft.pages=1211-1215&rft.artnum=2022IML0001&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2022IML0001&rft_dat=%3Cproquest_cross%3E2877112463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877112463&rft_id=info:pmid/&rfr_iscdi=true |