Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression

The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each ite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2023/09/01, Vol.E106.A(9), pp.1211-1215
Hauptverfasser: KIM, Sang Hoon, KO, Jong Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1215
container_issue 9
container_start_page 1211
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E106.A
creator KIM, Sang Hoon
KO, Jong Hwan
description The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each iteration generates a fixed size of the bit stream. Therefore, a large number of iterations are required at the high BPP, and fine-grained image quality control is not supported at the low BPP. In this paper, we propose a novel RNN-based image compression model that can schedule the channel size per iteration, to reduce the number of iterations at the high BPP and fine-grained bit-rate control at the low BPP. To further enhance the efficiency, multiple network models for various channel sizes are combined into a single model using the slimmable network architecture. The experimental results show that the proposed method achieves comparable performance to the existing method with finer BPP adjustment, increases parameters by only 0.15% and reduces the average amount of computation by 40.4%.
doi_str_mv 10.1587/transfun.2022IML0001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877112463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877112463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-5e730186d4e8b14ae90c5231d22e252f512927c576653440ae1f20405b675ad93</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOKf_gQ8BnzuTNGnaxzqmDuaEqW9CyNLr1tElNWkF_3s75uae7uB-33d3H0K3lIyoSOV967UNZWdHjDA2fZkRQugZGlDJRUTjWJ6jAcloEqWCpJfoKoRND6SM8gH6zAvdtNU34PFaWws1fjNrKLq6sitcOo9zY6AGr9vKWaxtgR8r28POtt7V2JV4MZ9HDzpAgadbvdqNto2HEHr-Gl2Uug5w81eH6ONx8j5-jmavT9NxPosMl6yNBMi4vycpOKRLyjVkxAgW04IxYIKVgrKMSSNkkoiYc6KBloxwIpaJFLrI4iG62_s23n11EFq1cZ23_UrFUikpZTyJe4rvKeNdCB5K1fhqq_2PokTtclSHHNVJjr1ssZdtQtv_dxRp31amhn_RhJJE5So7NCcmR9istVdg41-ni4PS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877112463</pqid></control><display><type>article</type><title>Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression</title><source>J-STAGE Free</source><creator>KIM, Sang Hoon ; KO, Jong Hwan</creator><creatorcontrib>KIM, Sang Hoon ; KO, Jong Hwan</creatorcontrib><description>The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each iteration generates a fixed size of the bit stream. Therefore, a large number of iterations are required at the high BPP, and fine-grained image quality control is not supported at the low BPP. In this paper, we propose a novel RNN-based image compression model that can schedule the channel size per iteration, to reduce the number of iterations at the high BPP and fine-grained bit-rate control at the low BPP. To further enhance the efficiency, multiple network models for various channel sizes are combined into a single model using the slimmable network architecture. The experimental results show that the proposed method achieves comparable performance to the existing method with finer BPP adjustment, increases parameters by only 0.15% and reduces the average amount of computation by 40.4%.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2022IML0001</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>acceleration ; adaptive ; Adaptive control ; channel-scheduling ; Computer architecture ; fine-control ; Image compression ; Image quality ; Iterative methods ; Quality control ; RNN ; Scheduling ; target-dependent</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/09/01, Vol.E106.A(9), pp.1211-1215</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c472t-5e730186d4e8b14ae90c5231d22e252f512927c576653440ae1f20405b675ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27922,27923</link.rule.ids></links><search><creatorcontrib>KIM, Sang Hoon</creatorcontrib><creatorcontrib>KO, Jong Hwan</creatorcontrib><title>Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each iteration generates a fixed size of the bit stream. Therefore, a large number of iterations are required at the high BPP, and fine-grained image quality control is not supported at the low BPP. In this paper, we propose a novel RNN-based image compression model that can schedule the channel size per iteration, to reduce the number of iterations at the high BPP and fine-grained bit-rate control at the low BPP. To further enhance the efficiency, multiple network models for various channel sizes are combined into a single model using the slimmable network architecture. The experimental results show that the proposed method achieves comparable performance to the existing method with finer BPP adjustment, increases parameters by only 0.15% and reduces the average amount of computation by 40.4%.</description><subject>acceleration</subject><subject>adaptive</subject><subject>Adaptive control</subject><subject>channel-scheduling</subject><subject>Computer architecture</subject><subject>fine-control</subject><subject>Image compression</subject><subject>Image quality</subject><subject>Iterative methods</subject><subject>Quality control</subject><subject>RNN</subject><subject>Scheduling</subject><subject>target-dependent</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkNFLwzAQxoMoOKf_gQ8BnzuTNGnaxzqmDuaEqW9CyNLr1tElNWkF_3s75uae7uB-33d3H0K3lIyoSOV967UNZWdHjDA2fZkRQugZGlDJRUTjWJ6jAcloEqWCpJfoKoRND6SM8gH6zAvdtNU34PFaWws1fjNrKLq6sitcOo9zY6AGr9vKWaxtgR8r28POtt7V2JV4MZ9HDzpAgadbvdqNto2HEHr-Gl2Uug5w81eH6ONx8j5-jmavT9NxPosMl6yNBMi4vycpOKRLyjVkxAgW04IxYIKVgrKMSSNkkoiYc6KBloxwIpaJFLrI4iG62_s23n11EFq1cZ23_UrFUikpZTyJe4rvKeNdCB5K1fhqq_2PokTtclSHHNVJjr1ssZdtQtv_dxRp31amhn_RhJJE5So7NCcmR9istVdg41-ni4PS</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>KIM, Sang Hoon</creator><creator>KO, Jong Hwan</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230901</creationdate><title>Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression</title><author>KIM, Sang Hoon ; KO, Jong Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-5e730186d4e8b14ae90c5231d22e252f512927c576653440ae1f20405b675ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acceleration</topic><topic>adaptive</topic><topic>Adaptive control</topic><topic>channel-scheduling</topic><topic>Computer architecture</topic><topic>fine-control</topic><topic>Image compression</topic><topic>Image quality</topic><topic>Iterative methods</topic><topic>Quality control</topic><topic>RNN</topic><topic>Scheduling</topic><topic>target-dependent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, Sang Hoon</creatorcontrib><creatorcontrib>KO, Jong Hwan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, Sang Hoon</au><au>KO, Jong Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>E106.A</volume><issue>9</issue><spage>1211</spage><epage>1215</epage><pages>1211-1215</pages><artnum>2022IML0001</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each iteration generates a fixed size of the bit stream. Therefore, a large number of iterations are required at the high BPP, and fine-grained image quality control is not supported at the low BPP. In this paper, we propose a novel RNN-based image compression model that can schedule the channel size per iteration, to reduce the number of iterations at the high BPP and fine-grained bit-rate control at the low BPP. To further enhance the efficiency, multiple network models for various channel sizes are combined into a single model using the slimmable network architecture. The experimental results show that the proposed method achieves comparable performance to the existing method with finer BPP adjustment, increases parameters by only 0.15% and reduces the average amount of computation by 40.4%.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2022IML0001</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/09/01, Vol.E106.A(9), pp.1211-1215
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_journals_2877112463
source J-STAGE Free
subjects acceleration
adaptive
Adaptive control
channel-scheduling
Computer architecture
fine-control
Image compression
Image quality
Iterative methods
Quality control
RNN
Scheduling
target-dependent
title Adaptive Channel Scheduling for Acceleration and Fine Control of RNN-Based Image Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Channel%20Scheduling%20for%20Acceleration%20and%20Fine%20Control%20of%20RNN-Based%20Image%20Compression&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=KIM,%20Sang%20Hoon&rft.date=2023-09-01&rft.volume=E106.A&rft.issue=9&rft.spage=1211&rft.epage=1215&rft.pages=1211-1215&rft.artnum=2022IML0001&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2022IML0001&rft_dat=%3Cproquest_cross%3E2877112463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877112463&rft_id=info:pmid/&rfr_iscdi=true