Physical Wet Cleaning Technology for Semiconductor Devices

In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JAPANESE JOURNAL OF MULTIPHASE FLOW 2023/06/15, Vol.37(2), pp.189-196
1. Verfasser: SEIKE, Yoshiyuki
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 2
container_start_page 189
container_title JAPANESE JOURNAL OF MULTIPHASE FLOW
container_volume 37
creator SEIKE, Yoshiyuki
description In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particles adhere to the substrate, the van der Waals force, as discussed in DLVO theory, is dominant. When these particles are removed by spraying, the fluid drag force on the particles is a major factor. In addition, in semiconductor device cleaning, it is not enough to simply increase the fluid drag; as a trade-off, increasing the fluid drag also increases the probability of pattern collapse and electrostatic damage. Thus, as semiconductor device miniaturization progresses, cleaning methods with even higher selectivity are needed.
doi_str_mv 10.3811/jjmf.2023.T007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877081109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877081109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1687-8938f8c160530f597bd9f48f0f4e71c2bbe18373c8449e28c01c363557e525823</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxhdRsNRePQc8J-6zO_EmrS8oKFjxuCTb2TYhTepuIvS_NzHayzyY3zfDfIRcM5oIYOy2LPcu4ZSLZE2pPiMTBsBipVN6TiY0ZTLmIMUlmYVQ5JRyCVLN-YTcve2OobBZFX1iGy0qzOqi3kZrtLu6qZrtMXKNj95xX9im3nS27bslfhcWwxW5cFkVcPaXp-Tj8WG9eI5Xr08vi_tVbNkcdAypAAd9TZWgTqU636ROgqNOomaW5zkyEFpYkDJFDpYyK-ZCKY2KK-BiSm7GvQfffHUYWlM2na_7k4aD1rR_n6Y9lYyU9U0IHp05-GKf-aNh1AwWmcEiM1hkBot6wXIUlKHNtnjCM98WtsIRF9rw3_AvO43tLvMGa_ED5lFwVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877081109</pqid></control><display><type>article</type><title>Physical Wet Cleaning Technology for Semiconductor Devices</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>SEIKE, Yoshiyuki</creator><creatorcontrib>SEIKE, Yoshiyuki</creatorcontrib><description>In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particles adhere to the substrate, the van der Waals force, as discussed in DLVO theory, is dominant. When these particles are removed by spraying, the fluid drag force on the particles is a major factor. In addition, in semiconductor device cleaning, it is not enough to simply increase the fluid drag; as a trade-off, increasing the fluid drag also increases the probability of pattern collapse and electrostatic damage. Thus, as semiconductor device miniaturization progresses, cleaning methods with even higher selectivity are needed.</description><identifier>ISSN: 0914-2843</identifier><identifier>EISSN: 1881-5790</identifier><identifier>DOI: 10.3811/jjmf.2023.T007</identifier><language>eng ; jpn</language><publisher>Osaka City: THE JAPANESE SOCIETY FOR MULTIPHASE FLOW</publisher><subject>Cleaning ; Damage patterns ; Drag ; Drag force ; Fluid dynamics ; Manufacturing ; Semiconductor ; Semiconductor devices ; Spray ; Spraying ; Substrates ; Ultrasonic ; Van der Waals forces</subject><ispartof>JAPANESE JOURNAL OF MULTIPHASE FLOW, 2023/06/15, Vol.37(2), pp.189-196</ispartof><rights>2023 by The Japanese Society for Multiphase Flow</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1687-8938f8c160530f597bd9f48f0f4e71c2bbe18373c8449e28c01c363557e525823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,1885,27931,27932</link.rule.ids></links><search><creatorcontrib>SEIKE, Yoshiyuki</creatorcontrib><title>Physical Wet Cleaning Technology for Semiconductor Devices</title><title>JAPANESE JOURNAL OF MULTIPHASE FLOW</title><description>In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particles adhere to the substrate, the van der Waals force, as discussed in DLVO theory, is dominant. When these particles are removed by spraying, the fluid drag force on the particles is a major factor. In addition, in semiconductor device cleaning, it is not enough to simply increase the fluid drag; as a trade-off, increasing the fluid drag also increases the probability of pattern collapse and electrostatic damage. Thus, as semiconductor device miniaturization progresses, cleaning methods with even higher selectivity are needed.</description><subject>Cleaning</subject><subject>Damage patterns</subject><subject>Drag</subject><subject>Drag force</subject><subject>Fluid dynamics</subject><subject>Manufacturing</subject><subject>Semiconductor</subject><subject>Semiconductor devices</subject><subject>Spray</subject><subject>Spraying</subject><subject>Substrates</subject><subject>Ultrasonic</subject><subject>Van der Waals forces</subject><issn>0914-2843</issn><issn>1881-5790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLw0AQxhdRsNRePQc8J-6zO_EmrS8oKFjxuCTb2TYhTepuIvS_NzHayzyY3zfDfIRcM5oIYOy2LPcu4ZSLZE2pPiMTBsBipVN6TiY0ZTLmIMUlmYVQ5JRyCVLN-YTcve2OobBZFX1iGy0qzOqi3kZrtLu6qZrtMXKNj95xX9im3nS27bslfhcWwxW5cFkVcPaXp-Tj8WG9eI5Xr08vi_tVbNkcdAypAAd9TZWgTqU636ROgqNOomaW5zkyEFpYkDJFDpYyK-ZCKY2KK-BiSm7GvQfffHUYWlM2na_7k4aD1rR_n6Y9lYyU9U0IHp05-GKf-aNh1AwWmcEiM1hkBot6wXIUlKHNtnjCM98WtsIRF9rw3_AvO43tLvMGa_ED5lFwVw</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>SEIKE, Yoshiyuki</creator><general>THE JAPANESE SOCIETY FOR MULTIPHASE FLOW</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20230615</creationdate><title>Physical Wet Cleaning Technology for Semiconductor Devices</title><author>SEIKE, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1687-8938f8c160530f597bd9f48f0f4e71c2bbe18373c8449e28c01c363557e525823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2023</creationdate><topic>Cleaning</topic><topic>Damage patterns</topic><topic>Drag</topic><topic>Drag force</topic><topic>Fluid dynamics</topic><topic>Manufacturing</topic><topic>Semiconductor</topic><topic>Semiconductor devices</topic><topic>Spray</topic><topic>Spraying</topic><topic>Substrates</topic><topic>Ultrasonic</topic><topic>Van der Waals forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SEIKE, Yoshiyuki</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>JAPANESE JOURNAL OF MULTIPHASE FLOW</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SEIKE, Yoshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Wet Cleaning Technology for Semiconductor Devices</atitle><jtitle>JAPANESE JOURNAL OF MULTIPHASE FLOW</jtitle><date>2023-06-15</date><risdate>2023</risdate><volume>37</volume><issue>2</issue><spage>189</spage><epage>196</epage><pages>189-196</pages><artnum>2023.T007</artnum><issn>0914-2843</issn><eissn>1881-5790</eissn><abstract>In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particles adhere to the substrate, the van der Waals force, as discussed in DLVO theory, is dominant. When these particles are removed by spraying, the fluid drag force on the particles is a major factor. In addition, in semiconductor device cleaning, it is not enough to simply increase the fluid drag; as a trade-off, increasing the fluid drag also increases the probability of pattern collapse and electrostatic damage. Thus, as semiconductor device miniaturization progresses, cleaning methods with even higher selectivity are needed.</abstract><cop>Osaka City</cop><pub>THE JAPANESE SOCIETY FOR MULTIPHASE FLOW</pub><doi>10.3811/jjmf.2023.T007</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-2843
ispartof JAPANESE JOURNAL OF MULTIPHASE FLOW, 2023/06/15, Vol.37(2), pp.189-196
issn 0914-2843
1881-5790
language eng ; jpn
recordid cdi_proquest_journals_2877081109
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cleaning
Damage patterns
Drag
Drag force
Fluid dynamics
Manufacturing
Semiconductor
Semiconductor devices
Spray
Spraying
Substrates
Ultrasonic
Van der Waals forces
title Physical Wet Cleaning Technology for Semiconductor Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Wet%20Cleaning%20Technology%20for%20Semiconductor%20Devices&rft.jtitle=JAPANESE%20JOURNAL%20OF%20MULTIPHASE%20FLOW&rft.au=SEIKE,%20Yoshiyuki&rft.date=2023-06-15&rft.volume=37&rft.issue=2&rft.spage=189&rft.epage=196&rft.pages=189-196&rft.artnum=2023.T007&rft.issn=0914-2843&rft.eissn=1881-5790&rft_id=info:doi/10.3811/jjmf.2023.T007&rft_dat=%3Cproquest_cross%3E2877081109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877081109&rft_id=info:pmid/&rfr_iscdi=true