Physical Wet Cleaning Technology for Semiconductor Devices
In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particl...
Gespeichert in:
Veröffentlicht in: | JAPANESE JOURNAL OF MULTIPHASE FLOW 2023/06/15, Vol.37(2), pp.189-196 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 2 |
container_start_page | 189 |
container_title | JAPANESE JOURNAL OF MULTIPHASE FLOW |
container_volume | 37 |
creator | SEIKE, Yoshiyuki |
description | In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particles adhere to the substrate, the van der Waals force, as discussed in DLVO theory, is dominant. When these particles are removed by spraying, the fluid drag force on the particles is a major factor. In addition, in semiconductor device cleaning, it is not enough to simply increase the fluid drag; as a trade-off, increasing the fluid drag also increases the probability of pattern collapse and electrostatic damage. Thus, as semiconductor device miniaturization progresses, cleaning methods with even higher selectivity are needed. |
doi_str_mv | 10.3811/jjmf.2023.T007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877081109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877081109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1687-8938f8c160530f597bd9f48f0f4e71c2bbe18373c8449e28c01c363557e525823</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxhdRsNRePQc8J-6zO_EmrS8oKFjxuCTb2TYhTepuIvS_NzHayzyY3zfDfIRcM5oIYOy2LPcu4ZSLZE2pPiMTBsBipVN6TiY0ZTLmIMUlmYVQ5JRyCVLN-YTcve2OobBZFX1iGy0qzOqi3kZrtLu6qZrtMXKNj95xX9im3nS27bslfhcWwxW5cFkVcPaXp-Tj8WG9eI5Xr08vi_tVbNkcdAypAAd9TZWgTqU636ROgqNOomaW5zkyEFpYkDJFDpYyK-ZCKY2KK-BiSm7GvQfffHUYWlM2na_7k4aD1rR_n6Y9lYyU9U0IHp05-GKf-aNh1AwWmcEiM1hkBot6wXIUlKHNtnjCM98WtsIRF9rw3_AvO43tLvMGa_ED5lFwVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877081109</pqid></control><display><type>article</type><title>Physical Wet Cleaning Technology for Semiconductor Devices</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>SEIKE, Yoshiyuki</creator><creatorcontrib>SEIKE, Yoshiyuki</creatorcontrib><description>In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particles adhere to the substrate, the van der Waals force, as discussed in DLVO theory, is dominant. When these particles are removed by spraying, the fluid drag force on the particles is a major factor. In addition, in semiconductor device cleaning, it is not enough to simply increase the fluid drag; as a trade-off, increasing the fluid drag also increases the probability of pattern collapse and electrostatic damage. Thus, as semiconductor device miniaturization progresses, cleaning methods with even higher selectivity are needed.</description><identifier>ISSN: 0914-2843</identifier><identifier>EISSN: 1881-5790</identifier><identifier>DOI: 10.3811/jjmf.2023.T007</identifier><language>eng ; jpn</language><publisher>Osaka City: THE JAPANESE SOCIETY FOR MULTIPHASE FLOW</publisher><subject>Cleaning ; Damage patterns ; Drag ; Drag force ; Fluid dynamics ; Manufacturing ; Semiconductor ; Semiconductor devices ; Spray ; Spraying ; Substrates ; Ultrasonic ; Van der Waals forces</subject><ispartof>JAPANESE JOURNAL OF MULTIPHASE FLOW, 2023/06/15, Vol.37(2), pp.189-196</ispartof><rights>2023 by The Japanese Society for Multiphase Flow</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1687-8938f8c160530f597bd9f48f0f4e71c2bbe18373c8449e28c01c363557e525823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,1885,27931,27932</link.rule.ids></links><search><creatorcontrib>SEIKE, Yoshiyuki</creatorcontrib><title>Physical Wet Cleaning Technology for Semiconductor Devices</title><title>JAPANESE JOURNAL OF MULTIPHASE FLOW</title><description>In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particles adhere to the substrate, the van der Waals force, as discussed in DLVO theory, is dominant. When these particles are removed by spraying, the fluid drag force on the particles is a major factor. In addition, in semiconductor device cleaning, it is not enough to simply increase the fluid drag; as a trade-off, increasing the fluid drag also increases the probability of pattern collapse and electrostatic damage. Thus, as semiconductor device miniaturization progresses, cleaning methods with even higher selectivity are needed.</description><subject>Cleaning</subject><subject>Damage patterns</subject><subject>Drag</subject><subject>Drag force</subject><subject>Fluid dynamics</subject><subject>Manufacturing</subject><subject>Semiconductor</subject><subject>Semiconductor devices</subject><subject>Spray</subject><subject>Spraying</subject><subject>Substrates</subject><subject>Ultrasonic</subject><subject>Van der Waals forces</subject><issn>0914-2843</issn><issn>1881-5790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLw0AQxhdRsNRePQc8J-6zO_EmrS8oKFjxuCTb2TYhTepuIvS_NzHayzyY3zfDfIRcM5oIYOy2LPcu4ZSLZE2pPiMTBsBipVN6TiY0ZTLmIMUlmYVQ5JRyCVLN-YTcve2OobBZFX1iGy0qzOqi3kZrtLu6qZrtMXKNj95xX9im3nS27bslfhcWwxW5cFkVcPaXp-Tj8WG9eI5Xr08vi_tVbNkcdAypAAd9TZWgTqU636ROgqNOomaW5zkyEFpYkDJFDpYyK-ZCKY2KK-BiSm7GvQfffHUYWlM2na_7k4aD1rR_n6Y9lYyU9U0IHp05-GKf-aNh1AwWmcEiM1hkBot6wXIUlKHNtnjCM98WtsIRF9rw3_AvO43tLvMGa_ED5lFwVw</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>SEIKE, Yoshiyuki</creator><general>THE JAPANESE SOCIETY FOR MULTIPHASE FLOW</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20230615</creationdate><title>Physical Wet Cleaning Technology for Semiconductor Devices</title><author>SEIKE, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1687-8938f8c160530f597bd9f48f0f4e71c2bbe18373c8449e28c01c363557e525823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2023</creationdate><topic>Cleaning</topic><topic>Damage patterns</topic><topic>Drag</topic><topic>Drag force</topic><topic>Fluid dynamics</topic><topic>Manufacturing</topic><topic>Semiconductor</topic><topic>Semiconductor devices</topic><topic>Spray</topic><topic>Spraying</topic><topic>Substrates</topic><topic>Ultrasonic</topic><topic>Van der Waals forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SEIKE, Yoshiyuki</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>JAPANESE JOURNAL OF MULTIPHASE FLOW</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SEIKE, Yoshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Wet Cleaning Technology for Semiconductor Devices</atitle><jtitle>JAPANESE JOURNAL OF MULTIPHASE FLOW</jtitle><date>2023-06-15</date><risdate>2023</risdate><volume>37</volume><issue>2</issue><spage>189</spage><epage>196</epage><pages>189-196</pages><artnum>2023.T007</artnum><issn>0914-2843</issn><eissn>1881-5790</eissn><abstract>In the semiconductor device manufacturing process, wet cleaning is an important process that determines product yield. In this paper, spray cleaning in the wet process of semiconductor device manufacturing is described from the perspective of macroscopic fluid dynamics. When micrometer-order particles adhere to the substrate, the van der Waals force, as discussed in DLVO theory, is dominant. When these particles are removed by spraying, the fluid drag force on the particles is a major factor. In addition, in semiconductor device cleaning, it is not enough to simply increase the fluid drag; as a trade-off, increasing the fluid drag also increases the probability of pattern collapse and electrostatic damage. Thus, as semiconductor device miniaturization progresses, cleaning methods with even higher selectivity are needed.</abstract><cop>Osaka City</cop><pub>THE JAPANESE SOCIETY FOR MULTIPHASE FLOW</pub><doi>10.3811/jjmf.2023.T007</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0914-2843 |
ispartof | JAPANESE JOURNAL OF MULTIPHASE FLOW, 2023/06/15, Vol.37(2), pp.189-196 |
issn | 0914-2843 1881-5790 |
language | eng ; jpn |
recordid | cdi_proquest_journals_2877081109 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cleaning Damage patterns Drag Drag force Fluid dynamics Manufacturing Semiconductor Semiconductor devices Spray Spraying Substrates Ultrasonic Van der Waals forces |
title | Physical Wet Cleaning Technology for Semiconductor Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T13%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Wet%20Cleaning%20Technology%20for%20Semiconductor%20Devices&rft.jtitle=JAPANESE%20JOURNAL%20OF%20MULTIPHASE%20FLOW&rft.au=SEIKE,%20Yoshiyuki&rft.date=2023-06-15&rft.volume=37&rft.issue=2&rft.spage=189&rft.epage=196&rft.pages=189-196&rft.artnum=2023.T007&rft.issn=0914-2843&rft.eissn=1881-5790&rft_id=info:doi/10.3811/jjmf.2023.T007&rft_dat=%3Cproquest_cross%3E2877081109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877081109&rft_id=info:pmid/&rfr_iscdi=true |