Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles
The surface of TiO 2 nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimatio...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2023-11, Vol.108 (2), p.263-273 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | 2 |
container_start_page | 263 |
container_title | Journal of sol-gel science and technology |
container_volume | 108 |
creator | Shilova, Olga A. Kovalenko, Anastasiya S. Nikolaev, Anton M. Mjakin, Sergey V. Sinel’nikov, Alexander A. Chelibanov, Vladimir P. Gorshkova, Yulia E. Tsvigun, Nataliya V. Ruzimuradov, Olim N. Kopitsa, Gennady P. |
description | The surface of TiO
2
nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimation of the surface acid-base properties via dynamic pH measurements revealed that the applied surface modification provided almost no changes in the phase composition, crystallite size range (~16 nm) and mesostructure of the initial anatase nanoparticles, but resulted in a more than twofold increase in the specific surface area and change of the surface functionality from a prominent Lewis acidity toward a relatively weak Broensted acidity. The resulting TiO
2
@SiO
2
“core-shell” particles are shown to exhibit a significant enhancement of singlet oxygen generation compared with the initial TiO
2
. In conjunction with increased specific surface and modification of the surface centers, this effect promoted a drastic growth of photocatalytic activity indicated by an almost 90% degradation of methylene blue dye upon UV irradiation.
Graphical abstract
Highlights
The surface modification of TiO
2
NPs with SiO
2
did not cause any phase composition changes.
SiO
2
shell formation led to a significant decrease in the size NPs and their agglomerates.
The formation of SiO
2
shell resulted in a more than double increase in the NPs specific surface area.
The ТiO
2
@SiO
2
composite nanoparticles are characterized by a higher surface-fractal dimension.
SiO
2
shells improve the stability of the aqueous suspensions of TiO
2
NPs. |
doi_str_mv | 10.1007/s10971-022-05943-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877035123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877035123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-96a902ac8a27a8c2dc92d15c85a167e09b61b8efd1ec5de36ed025af6ec52e073</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKsv4CngOTrJbja7N6X4Dwo9tB4lpMlsu2XdrMlW6M138A19EqMVvHmZYeD3zQwfIeccLjmAuoocKsUZCMFAVnnG5AEZcakylpd5cUhGUImSgQJ1TE5i3ACAzLkakef5NtTGIjWdo_3aD96awbS7obG0D77HMDQYqa9p9O3n-8cKW-owNG_o6KKZiet5KtT6gCyusW1pZzrfm0TZFuMpOapNG_Hst4_J093tYvLAprP7x8nNlFmhYGBVYSoQxpZGKFNa4WwlHJe2lIYXCqFaFnxZYu04WukwK9CBkKYu0igQVDYmF_u96eXXLcZBb_w2dOmkFqVSkEkuspQS-5QNPsaAte5D82LCTnPQ3xr1XqNOGvWPRi0TlO2hmMLdCsPf6n-oL5jTd2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877035123</pqid></control><display><type>article</type><title>Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shilova, Olga A. ; Kovalenko, Anastasiya S. ; Nikolaev, Anton M. ; Mjakin, Sergey V. ; Sinel’nikov, Alexander A. ; Chelibanov, Vladimir P. ; Gorshkova, Yulia E. ; Tsvigun, Nataliya V. ; Ruzimuradov, Olim N. ; Kopitsa, Gennady P.</creator><creatorcontrib>Shilova, Olga A. ; Kovalenko, Anastasiya S. ; Nikolaev, Anton M. ; Mjakin, Sergey V. ; Sinel’nikov, Alexander A. ; Chelibanov, Vladimir P. ; Gorshkova, Yulia E. ; Tsvigun, Nataliya V. ; Ruzimuradov, Olim N. ; Kopitsa, Gennady P.</creatorcontrib><description>The surface of TiO
2
nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimation of the surface acid-base properties via dynamic pH measurements revealed that the applied surface modification provided almost no changes in the phase composition, crystallite size range (~16 nm) and mesostructure of the initial anatase nanoparticles, but resulted in a more than twofold increase in the specific surface area and change of the surface functionality from a prominent Lewis acidity toward a relatively weak Broensted acidity. The resulting TiO
2
@SiO
2
“core-shell” particles are shown to exhibit a significant enhancement of singlet oxygen generation compared with the initial TiO
2
. In conjunction with increased specific surface and modification of the surface centers, this effect promoted a drastic growth of photocatalytic activity indicated by an almost 90% degradation of methylene blue dye upon UV irradiation.
Graphical abstract
Highlights
The surface modification of TiO
2
NPs with SiO
2
did not cause any phase composition changes.
SiO
2
shell formation led to a significant decrease in the size NPs and their agglomerates.
The formation of SiO
2
shell resulted in a more than double increase in the NPs specific surface area.
The ТiO
2
@SiO
2
composite nanoparticles are characterized by a higher surface-fractal dimension.
SiO
2
shells improve the stability of the aqueous suspensions of TiO
2
NPs.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-022-05943-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Catalytic activity ; Ceramics ; Chemistry and Materials Science ; colloids ; Composites ; Core-shell particles ; Crystallites ; etc. ; fibers ; Fractal geometry ; Glass ; Inorganic Chemistry ; Materials Science ; Methylene blue ; Nanoparticles ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Nano-structured materials (particles ; Phase composition ; Photocatalysis ; Silicon dioxide ; Singlet oxygen ; Sol-gel processes ; Specific surface ; Surface area ; Tetraethyl orthosilicate ; Titanium dioxide ; Ultraviolet radiation ; Zeta potential</subject><ispartof>Journal of sol-gel science and technology, 2023-11, Vol.108 (2), p.263-273</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-96a902ac8a27a8c2dc92d15c85a167e09b61b8efd1ec5de36ed025af6ec52e073</cites><orcidid>0000-0002-3856-9054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-022-05943-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-022-05943-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shilova, Olga A.</creatorcontrib><creatorcontrib>Kovalenko, Anastasiya S.</creatorcontrib><creatorcontrib>Nikolaev, Anton M.</creatorcontrib><creatorcontrib>Mjakin, Sergey V.</creatorcontrib><creatorcontrib>Sinel’nikov, Alexander A.</creatorcontrib><creatorcontrib>Chelibanov, Vladimir P.</creatorcontrib><creatorcontrib>Gorshkova, Yulia E.</creatorcontrib><creatorcontrib>Tsvigun, Nataliya V.</creatorcontrib><creatorcontrib>Ruzimuradov, Olim N.</creatorcontrib><creatorcontrib>Kopitsa, Gennady P.</creatorcontrib><title>Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>The surface of TiO
2
nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimation of the surface acid-base properties via dynamic pH measurements revealed that the applied surface modification provided almost no changes in the phase composition, crystallite size range (~16 nm) and mesostructure of the initial anatase nanoparticles, but resulted in a more than twofold increase in the specific surface area and change of the surface functionality from a prominent Lewis acidity toward a relatively weak Broensted acidity. The resulting TiO
2
@SiO
2
“core-shell” particles are shown to exhibit a significant enhancement of singlet oxygen generation compared with the initial TiO
2
. In conjunction with increased specific surface and modification of the surface centers, this effect promoted a drastic growth of photocatalytic activity indicated by an almost 90% degradation of methylene blue dye upon UV irradiation.
Graphical abstract
Highlights
The surface modification of TiO
2
NPs with SiO
2
did not cause any phase composition changes.
SiO
2
shell formation led to a significant decrease in the size NPs and their agglomerates.
The formation of SiO
2
shell resulted in a more than double increase in the NPs specific surface area.
The ТiO
2
@SiO
2
composite nanoparticles are characterized by a higher surface-fractal dimension.
SiO
2
shells improve the stability of the aqueous suspensions of TiO
2
NPs.</description><subject>Anatase</subject><subject>Catalytic activity</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>colloids</subject><subject>Composites</subject><subject>Core-shell particles</subject><subject>Crystallites</subject><subject>etc.</subject><subject>fibers</subject><subject>Fractal geometry</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Nano-structured materials (particles</subject><subject>Phase composition</subject><subject>Photocatalysis</subject><subject>Silicon dioxide</subject><subject>Singlet oxygen</subject><subject>Sol-gel processes</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Tetraethyl orthosilicate</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><subject>Zeta potential</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM9KAzEQh4MoWKsv4CngOTrJbja7N6X4Dwo9tB4lpMlsu2XdrMlW6M138A19EqMVvHmZYeD3zQwfIeccLjmAuoocKsUZCMFAVnnG5AEZcakylpd5cUhGUImSgQJ1TE5i3ACAzLkakef5NtTGIjWdo_3aD96awbS7obG0D77HMDQYqa9p9O3n-8cKW-owNG_o6KKZiet5KtT6gCyusW1pZzrfm0TZFuMpOapNG_Hst4_J093tYvLAprP7x8nNlFmhYGBVYSoQxpZGKFNa4WwlHJe2lIYXCqFaFnxZYu04WukwK9CBkKYu0igQVDYmF_u96eXXLcZBb_w2dOmkFqVSkEkuspQS-5QNPsaAte5D82LCTnPQ3xr1XqNOGvWPRi0TlO2hmMLdCsPf6n-oL5jTd2A</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Shilova, Olga A.</creator><creator>Kovalenko, Anastasiya S.</creator><creator>Nikolaev, Anton M.</creator><creator>Mjakin, Sergey V.</creator><creator>Sinel’nikov, Alexander A.</creator><creator>Chelibanov, Vladimir P.</creator><creator>Gorshkova, Yulia E.</creator><creator>Tsvigun, Nataliya V.</creator><creator>Ruzimuradov, Olim N.</creator><creator>Kopitsa, Gennady P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3856-9054</orcidid></search><sort><creationdate>20231101</creationdate><title>Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles</title><author>Shilova, Olga A. ; Kovalenko, Anastasiya S. ; Nikolaev, Anton M. ; Mjakin, Sergey V. ; Sinel’nikov, Alexander A. ; Chelibanov, Vladimir P. ; Gorshkova, Yulia E. ; Tsvigun, Nataliya V. ; Ruzimuradov, Olim N. ; Kopitsa, Gennady P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-96a902ac8a27a8c2dc92d15c85a167e09b61b8efd1ec5de36ed025af6ec52e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatase</topic><topic>Catalytic activity</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>colloids</topic><topic>Composites</topic><topic>Core-shell particles</topic><topic>Crystallites</topic><topic>etc.</topic><topic>fibers</topic><topic>Fractal geometry</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Nano-structured materials (particles</topic><topic>Phase composition</topic><topic>Photocatalysis</topic><topic>Silicon dioxide</topic><topic>Singlet oxygen</topic><topic>Sol-gel processes</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Tetraethyl orthosilicate</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilova, Olga A.</creatorcontrib><creatorcontrib>Kovalenko, Anastasiya S.</creatorcontrib><creatorcontrib>Nikolaev, Anton M.</creatorcontrib><creatorcontrib>Mjakin, Sergey V.</creatorcontrib><creatorcontrib>Sinel’nikov, Alexander A.</creatorcontrib><creatorcontrib>Chelibanov, Vladimir P.</creatorcontrib><creatorcontrib>Gorshkova, Yulia E.</creatorcontrib><creatorcontrib>Tsvigun, Nataliya V.</creatorcontrib><creatorcontrib>Ruzimuradov, Olim N.</creatorcontrib><creatorcontrib>Kopitsa, Gennady P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilova, Olga A.</au><au>Kovalenko, Anastasiya S.</au><au>Nikolaev, Anton M.</au><au>Mjakin, Sergey V.</au><au>Sinel’nikov, Alexander A.</au><au>Chelibanov, Vladimir P.</au><au>Gorshkova, Yulia E.</au><au>Tsvigun, Nataliya V.</au><au>Ruzimuradov, Olim N.</au><au>Kopitsa, Gennady P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>108</volume><issue>2</issue><spage>263</spage><epage>273</epage><pages>263-273</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>The surface of TiO
2
nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimation of the surface acid-base properties via dynamic pH measurements revealed that the applied surface modification provided almost no changes in the phase composition, crystallite size range (~16 nm) and mesostructure of the initial anatase nanoparticles, but resulted in a more than twofold increase in the specific surface area and change of the surface functionality from a prominent Lewis acidity toward a relatively weak Broensted acidity. The resulting TiO
2
@SiO
2
“core-shell” particles are shown to exhibit a significant enhancement of singlet oxygen generation compared with the initial TiO
2
. In conjunction with increased specific surface and modification of the surface centers, this effect promoted a drastic growth of photocatalytic activity indicated by an almost 90% degradation of methylene blue dye upon UV irradiation.
Graphical abstract
Highlights
The surface modification of TiO
2
NPs with SiO
2
did not cause any phase composition changes.
SiO
2
shell formation led to a significant decrease in the size NPs and their agglomerates.
The formation of SiO
2
shell resulted in a more than double increase in the NPs specific surface area.
The ТiO
2
@SiO
2
composite nanoparticles are characterized by a higher surface-fractal dimension.
SiO
2
shells improve the stability of the aqueous suspensions of TiO
2
NPs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-022-05943-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3856-9054</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2023-11, Vol.108 (2), p.263-273 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_journals_2877035123 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anatase Catalytic activity Ceramics Chemistry and Materials Science colloids Composites Core-shell particles Crystallites etc. fibers Fractal geometry Glass Inorganic Chemistry Materials Science Methylene blue Nanoparticles Nanotechnology Natural Materials Optical and Electronic Materials Original Paper: Nano-structured materials (particles Phase composition Photocatalysis Silicon dioxide Singlet oxygen Sol-gel processes Specific surface Surface area Tetraethyl orthosilicate Titanium dioxide Ultraviolet radiation Zeta potential |
title | Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20and%20photocatalytic%20properties%20of%20sol%E2%80%93gel%20derived%20TiO2@SiO2%20core-shell%20nanoparticles&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Shilova,%20Olga%20A.&rft.date=2023-11-01&rft.volume=108&rft.issue=2&rft.spage=263&rft.epage=273&rft.pages=263-273&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-022-05943-5&rft_dat=%3Cproquest_cross%3E2877035123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877035123&rft_id=info:pmid/&rfr_iscdi=true |