Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles

The surface of TiO 2 nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2023-11, Vol.108 (2), p.263-273
Hauptverfasser: Shilova, Olga A., Kovalenko, Anastasiya S., Nikolaev, Anton M., Mjakin, Sergey V., Sinel’nikov, Alexander A., Chelibanov, Vladimir P., Gorshkova, Yulia E., Tsvigun, Nataliya V., Ruzimuradov, Olim N., Kopitsa, Gennady P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 2
container_start_page 263
container_title Journal of sol-gel science and technology
container_volume 108
creator Shilova, Olga A.
Kovalenko, Anastasiya S.
Nikolaev, Anton M.
Mjakin, Sergey V.
Sinel’nikov, Alexander A.
Chelibanov, Vladimir P.
Gorshkova, Yulia E.
Tsvigun, Nataliya V.
Ruzimuradov, Olim N.
Kopitsa, Gennady P.
description The surface of TiO 2 nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimation of the surface acid-base properties via dynamic pH measurements revealed that the applied surface modification provided almost no changes in the phase composition, crystallite size range (~16 nm) and mesostructure of the initial anatase nanoparticles, but resulted in a more than twofold increase in the specific surface area and change of the surface functionality from a prominent Lewis acidity toward a relatively weak Broensted acidity. The resulting TiO 2 @SiO 2 “core-shell” particles are shown to exhibit a significant enhancement of singlet oxygen generation compared with the initial TiO 2 . In conjunction with increased specific surface and modification of the surface centers, this effect promoted a drastic growth of photocatalytic activity indicated by an almost 90% degradation of methylene blue dye upon UV irradiation. Graphical abstract Highlights The surface modification of TiO 2 NPs with SiO 2 did not cause any phase composition changes. SiO 2 shell formation led to a significant decrease in the size NPs and their agglomerates. The formation of SiO 2 shell resulted in a more than double increase in the NPs specific surface area. The ТiO 2 @SiO 2 composite nanoparticles are characterized by a higher surface-fractal dimension. SiO 2 shells improve the stability of the aqueous suspensions of TiO 2 NPs.
doi_str_mv 10.1007/s10971-022-05943-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877035123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877035123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-96a902ac8a27a8c2dc92d15c85a167e09b61b8efd1ec5de36ed025af6ec52e073</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKsv4CngOTrJbja7N6X4Dwo9tB4lpMlsu2XdrMlW6M138A19EqMVvHmZYeD3zQwfIeccLjmAuoocKsUZCMFAVnnG5AEZcakylpd5cUhGUImSgQJ1TE5i3ACAzLkakef5NtTGIjWdo_3aD96awbS7obG0D77HMDQYqa9p9O3n-8cKW-owNG_o6KKZiet5KtT6gCyusW1pZzrfm0TZFuMpOapNG_Hst4_J093tYvLAprP7x8nNlFmhYGBVYSoQxpZGKFNa4WwlHJe2lIYXCqFaFnxZYu04WukwK9CBkKYu0igQVDYmF_u96eXXLcZBb_w2dOmkFqVSkEkuspQS-5QNPsaAte5D82LCTnPQ3xr1XqNOGvWPRi0TlO2hmMLdCsPf6n-oL5jTd2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877035123</pqid></control><display><type>article</type><title>Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shilova, Olga A. ; Kovalenko, Anastasiya S. ; Nikolaev, Anton M. ; Mjakin, Sergey V. ; Sinel’nikov, Alexander A. ; Chelibanov, Vladimir P. ; Gorshkova, Yulia E. ; Tsvigun, Nataliya V. ; Ruzimuradov, Olim N. ; Kopitsa, Gennady P.</creator><creatorcontrib>Shilova, Olga A. ; Kovalenko, Anastasiya S. ; Nikolaev, Anton M. ; Mjakin, Sergey V. ; Sinel’nikov, Alexander A. ; Chelibanov, Vladimir P. ; Gorshkova, Yulia E. ; Tsvigun, Nataliya V. ; Ruzimuradov, Olim N. ; Kopitsa, Gennady P.</creatorcontrib><description>The surface of TiO 2 nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimation of the surface acid-base properties via dynamic pH measurements revealed that the applied surface modification provided almost no changes in the phase composition, crystallite size range (~16 nm) and mesostructure of the initial anatase nanoparticles, but resulted in a more than twofold increase in the specific surface area and change of the surface functionality from a prominent Lewis acidity toward a relatively weak Broensted acidity. The resulting TiO 2 @SiO 2 “core-shell” particles are shown to exhibit a significant enhancement of singlet oxygen generation compared with the initial TiO 2 . In conjunction with increased specific surface and modification of the surface centers, this effect promoted a drastic growth of photocatalytic activity indicated by an almost 90% degradation of methylene blue dye upon UV irradiation. Graphical abstract Highlights The surface modification of TiO 2 NPs with SiO 2 did not cause any phase composition changes. SiO 2 shell formation led to a significant decrease in the size NPs and their agglomerates. The formation of SiO 2 shell resulted in a more than double increase in the NPs specific surface area. The ТiO 2 @SiO 2 composite nanoparticles are characterized by a higher surface-fractal dimension. SiO 2 shells improve the stability of the aqueous suspensions of TiO 2 NPs.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-022-05943-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Catalytic activity ; Ceramics ; Chemistry and Materials Science ; colloids ; Composites ; Core-shell particles ; Crystallites ; etc. ; fibers ; Fractal geometry ; Glass ; Inorganic Chemistry ; Materials Science ; Methylene blue ; Nanoparticles ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Nano-structured materials (particles ; Phase composition ; Photocatalysis ; Silicon dioxide ; Singlet oxygen ; Sol-gel processes ; Specific surface ; Surface area ; Tetraethyl orthosilicate ; Titanium dioxide ; Ultraviolet radiation ; Zeta potential</subject><ispartof>Journal of sol-gel science and technology, 2023-11, Vol.108 (2), p.263-273</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-96a902ac8a27a8c2dc92d15c85a167e09b61b8efd1ec5de36ed025af6ec52e073</cites><orcidid>0000-0002-3856-9054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-022-05943-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-022-05943-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shilova, Olga A.</creatorcontrib><creatorcontrib>Kovalenko, Anastasiya S.</creatorcontrib><creatorcontrib>Nikolaev, Anton M.</creatorcontrib><creatorcontrib>Mjakin, Sergey V.</creatorcontrib><creatorcontrib>Sinel’nikov, Alexander A.</creatorcontrib><creatorcontrib>Chelibanov, Vladimir P.</creatorcontrib><creatorcontrib>Gorshkova, Yulia E.</creatorcontrib><creatorcontrib>Tsvigun, Nataliya V.</creatorcontrib><creatorcontrib>Ruzimuradov, Olim N.</creatorcontrib><creatorcontrib>Kopitsa, Gennady P.</creatorcontrib><title>Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>The surface of TiO 2 nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimation of the surface acid-base properties via dynamic pH measurements revealed that the applied surface modification provided almost no changes in the phase composition, crystallite size range (~16 nm) and mesostructure of the initial anatase nanoparticles, but resulted in a more than twofold increase in the specific surface area and change of the surface functionality from a prominent Lewis acidity toward a relatively weak Broensted acidity. The resulting TiO 2 @SiO 2 “core-shell” particles are shown to exhibit a significant enhancement of singlet oxygen generation compared with the initial TiO 2 . In conjunction with increased specific surface and modification of the surface centers, this effect promoted a drastic growth of photocatalytic activity indicated by an almost 90% degradation of methylene blue dye upon UV irradiation. Graphical abstract Highlights The surface modification of TiO 2 NPs with SiO 2 did not cause any phase composition changes. SiO 2 shell formation led to a significant decrease in the size NPs and their agglomerates. The formation of SiO 2 shell resulted in a more than double increase in the NPs specific surface area. The ТiO 2 @SiO 2 composite nanoparticles are characterized by a higher surface-fractal dimension. SiO 2 shells improve the stability of the aqueous suspensions of TiO 2 NPs.</description><subject>Anatase</subject><subject>Catalytic activity</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>colloids</subject><subject>Composites</subject><subject>Core-shell particles</subject><subject>Crystallites</subject><subject>etc.</subject><subject>fibers</subject><subject>Fractal geometry</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Nano-structured materials (particles</subject><subject>Phase composition</subject><subject>Photocatalysis</subject><subject>Silicon dioxide</subject><subject>Singlet oxygen</subject><subject>Sol-gel processes</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Tetraethyl orthosilicate</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><subject>Zeta potential</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM9KAzEQh4MoWKsv4CngOTrJbja7N6X4Dwo9tB4lpMlsu2XdrMlW6M138A19EqMVvHmZYeD3zQwfIeccLjmAuoocKsUZCMFAVnnG5AEZcakylpd5cUhGUImSgQJ1TE5i3ACAzLkakef5NtTGIjWdo_3aD96awbS7obG0D77HMDQYqa9p9O3n-8cKW-owNG_o6KKZiet5KtT6gCyusW1pZzrfm0TZFuMpOapNG_Hst4_J093tYvLAprP7x8nNlFmhYGBVYSoQxpZGKFNa4WwlHJe2lIYXCqFaFnxZYu04WukwK9CBkKYu0igQVDYmF_u96eXXLcZBb_w2dOmkFqVSkEkuspQS-5QNPsaAte5D82LCTnPQ3xr1XqNOGvWPRi0TlO2hmMLdCsPf6n-oL5jTd2A</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Shilova, Olga A.</creator><creator>Kovalenko, Anastasiya S.</creator><creator>Nikolaev, Anton M.</creator><creator>Mjakin, Sergey V.</creator><creator>Sinel’nikov, Alexander A.</creator><creator>Chelibanov, Vladimir P.</creator><creator>Gorshkova, Yulia E.</creator><creator>Tsvigun, Nataliya V.</creator><creator>Ruzimuradov, Olim N.</creator><creator>Kopitsa, Gennady P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3856-9054</orcidid></search><sort><creationdate>20231101</creationdate><title>Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles</title><author>Shilova, Olga A. ; Kovalenko, Anastasiya S. ; Nikolaev, Anton M. ; Mjakin, Sergey V. ; Sinel’nikov, Alexander A. ; Chelibanov, Vladimir P. ; Gorshkova, Yulia E. ; Tsvigun, Nataliya V. ; Ruzimuradov, Olim N. ; Kopitsa, Gennady P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-96a902ac8a27a8c2dc92d15c85a167e09b61b8efd1ec5de36ed025af6ec52e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatase</topic><topic>Catalytic activity</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>colloids</topic><topic>Composites</topic><topic>Core-shell particles</topic><topic>Crystallites</topic><topic>etc.</topic><topic>fibers</topic><topic>Fractal geometry</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Nano-structured materials (particles</topic><topic>Phase composition</topic><topic>Photocatalysis</topic><topic>Silicon dioxide</topic><topic>Singlet oxygen</topic><topic>Sol-gel processes</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Tetraethyl orthosilicate</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilova, Olga A.</creatorcontrib><creatorcontrib>Kovalenko, Anastasiya S.</creatorcontrib><creatorcontrib>Nikolaev, Anton M.</creatorcontrib><creatorcontrib>Mjakin, Sergey V.</creatorcontrib><creatorcontrib>Sinel’nikov, Alexander A.</creatorcontrib><creatorcontrib>Chelibanov, Vladimir P.</creatorcontrib><creatorcontrib>Gorshkova, Yulia E.</creatorcontrib><creatorcontrib>Tsvigun, Nataliya V.</creatorcontrib><creatorcontrib>Ruzimuradov, Olim N.</creatorcontrib><creatorcontrib>Kopitsa, Gennady P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilova, Olga A.</au><au>Kovalenko, Anastasiya S.</au><au>Nikolaev, Anton M.</au><au>Mjakin, Sergey V.</au><au>Sinel’nikov, Alexander A.</au><au>Chelibanov, Vladimir P.</au><au>Gorshkova, Yulia E.</au><au>Tsvigun, Nataliya V.</au><au>Ruzimuradov, Olim N.</au><au>Kopitsa, Gennady P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>108</volume><issue>2</issue><spage>263</spage><epage>273</epage><pages>263-273</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>The surface of TiO 2 nanoparticles was modified with silica prepared by acid hydrolysis of tetraethoxysilane followed by polycondensation. A comparative characterization of the initial and modified nanoparticles by TEM, XRD, specific surface area and ζ-potential measurements as well as the estimation of the surface acid-base properties via dynamic pH measurements revealed that the applied surface modification provided almost no changes in the phase composition, crystallite size range (~16 nm) and mesostructure of the initial anatase nanoparticles, but resulted in a more than twofold increase in the specific surface area and change of the surface functionality from a prominent Lewis acidity toward a relatively weak Broensted acidity. The resulting TiO 2 @SiO 2 “core-shell” particles are shown to exhibit a significant enhancement of singlet oxygen generation compared with the initial TiO 2 . In conjunction with increased specific surface and modification of the surface centers, this effect promoted a drastic growth of photocatalytic activity indicated by an almost 90% degradation of methylene blue dye upon UV irradiation. Graphical abstract Highlights The surface modification of TiO 2 NPs with SiO 2 did not cause any phase composition changes. SiO 2 shell formation led to a significant decrease in the size NPs and their agglomerates. The formation of SiO 2 shell resulted in a more than double increase in the NPs specific surface area. The ТiO 2 @SiO 2 composite nanoparticles are characterized by a higher surface-fractal dimension. SiO 2 shells improve the stability of the aqueous suspensions of TiO 2 NPs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-022-05943-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3856-9054</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2023-11, Vol.108 (2), p.263-273
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_journals_2877035123
source SpringerLink Journals - AutoHoldings
subjects Anatase
Catalytic activity
Ceramics
Chemistry and Materials Science
colloids
Composites
Core-shell particles
Crystallites
etc.
fibers
Fractal geometry
Glass
Inorganic Chemistry
Materials Science
Methylene blue
Nanoparticles
Nanotechnology
Natural Materials
Optical and Electronic Materials
Original Paper: Nano-structured materials (particles
Phase composition
Photocatalysis
Silicon dioxide
Singlet oxygen
Sol-gel processes
Specific surface
Surface area
Tetraethyl orthosilicate
Titanium dioxide
Ultraviolet radiation
Zeta potential
title Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 core-shell nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20and%20photocatalytic%20properties%20of%20sol%E2%80%93gel%20derived%20TiO2@SiO2%20core-shell%20nanoparticles&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Shilova,%20Olga%20A.&rft.date=2023-11-01&rft.volume=108&rft.issue=2&rft.spage=263&rft.epage=273&rft.pages=263-273&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-022-05943-5&rft_dat=%3Cproquest_cross%3E2877035123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877035123&rft_id=info:pmid/&rfr_iscdi=true