Active Learning with Dual Model Predictive Path-Integral Control for Interaction-Aware Autonomous Highway On-ramp Merging
Merging into dense highway traffic for an autonomous vehicle is a complex decision-making task, wherein the vehicle must identify a potential gap and coordinate with surrounding human drivers, each of whom may exhibit diverse driving behaviors. Many existing methods consider other drivers to be dyna...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Knaup, Jacob D'sa, Jovin Behdad Chalaki Tyler Naes Mahjoub, Hossein Nourkhiz Moradi-Pari, Ehsan Tsiotras, Panagiotis |
description | Merging into dense highway traffic for an autonomous vehicle is a complex decision-making task, wherein the vehicle must identify a potential gap and coordinate with surrounding human drivers, each of whom may exhibit diverse driving behaviors. Many existing methods consider other drivers to be dynamic obstacles and, as a result, are incapable of capturing the full intent of the human drivers via this passive planning. In this paper, we propose a novel dual control framework based on Model Predictive Path-Integral control to generate interactive trajectories. This framework incorporates a Bayesian inference approach to actively learn the agents' parameters, i.e., other drivers' model parameters. The proposed framework employs a sampling-based approach that is suitable for real-time implementation through the utilization of GPUs. We illustrate the effectiveness of our proposed methodology through comprehensive numerical simulations conducted in both high and low-fidelity simulation scenarios focusing on autonomous on-ramp merging. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876764024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876764024</sourcerecordid><originalsourceid>FETCH-proquest_journals_28767640243</originalsourceid><addsrcrecordid>eNqNjcsKwjAQRYMgKOo_DLgO1LS2bosPFBRduC9BxzZSMzpJLP69Ff0AVxfOOXA7oq_ieCJniVI9MXLuGkWRSjM1ncZ98cpP3jwRtqjZGltCY3wFi6Br2NEZazgwns23OWhfyY31WHKr52Q9Uw0XYvhA1m1FVuaNZoQ8eLJ0o-Bgbcqq0S_YW8n6docdctk-DUX3omuHo98OxHi1PM7X8s70COh8caXAtlWFmmVpliaRSuL_qjePn03r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876764024</pqid></control><display><type>article</type><title>Active Learning with Dual Model Predictive Path-Integral Control for Interaction-Aware Autonomous Highway On-ramp Merging</title><source>Free E- Journals</source><creator>Knaup, Jacob ; D'sa, Jovin ; Behdad Chalaki ; Tyler Naes ; Mahjoub, Hossein Nourkhiz ; Moradi-Pari, Ehsan ; Tsiotras, Panagiotis</creator><creatorcontrib>Knaup, Jacob ; D'sa, Jovin ; Behdad Chalaki ; Tyler Naes ; Mahjoub, Hossein Nourkhiz ; Moradi-Pari, Ehsan ; Tsiotras, Panagiotis</creatorcontrib><description>Merging into dense highway traffic for an autonomous vehicle is a complex decision-making task, wherein the vehicle must identify a potential gap and coordinate with surrounding human drivers, each of whom may exhibit diverse driving behaviors. Many existing methods consider other drivers to be dynamic obstacles and, as a result, are incapable of capturing the full intent of the human drivers via this passive planning. In this paper, we propose a novel dual control framework based on Model Predictive Path-Integral control to generate interactive trajectories. This framework incorporates a Bayesian inference approach to actively learn the agents' parameters, i.e., other drivers' model parameters. The proposed framework employs a sampling-based approach that is suitable for real-time implementation through the utilization of GPUs. We illustrate the effectiveness of our proposed methodology through comprehensive numerical simulations conducted in both high and low-fidelity simulation scenarios focusing on autonomous on-ramp merging.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Interactive control ; Mathematical models ; Parameters ; Predictive control ; Statistical inference ; Trajectory control</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Knaup, Jacob</creatorcontrib><creatorcontrib>D'sa, Jovin</creatorcontrib><creatorcontrib>Behdad Chalaki</creatorcontrib><creatorcontrib>Tyler Naes</creatorcontrib><creatorcontrib>Mahjoub, Hossein Nourkhiz</creatorcontrib><creatorcontrib>Moradi-Pari, Ehsan</creatorcontrib><creatorcontrib>Tsiotras, Panagiotis</creatorcontrib><title>Active Learning with Dual Model Predictive Path-Integral Control for Interaction-Aware Autonomous Highway On-ramp Merging</title><title>arXiv.org</title><description>Merging into dense highway traffic for an autonomous vehicle is a complex decision-making task, wherein the vehicle must identify a potential gap and coordinate with surrounding human drivers, each of whom may exhibit diverse driving behaviors. Many existing methods consider other drivers to be dynamic obstacles and, as a result, are incapable of capturing the full intent of the human drivers via this passive planning. In this paper, we propose a novel dual control framework based on Model Predictive Path-Integral control to generate interactive trajectories. This framework incorporates a Bayesian inference approach to actively learn the agents' parameters, i.e., other drivers' model parameters. The proposed framework employs a sampling-based approach that is suitable for real-time implementation through the utilization of GPUs. We illustrate the effectiveness of our proposed methodology through comprehensive numerical simulations conducted in both high and low-fidelity simulation scenarios focusing on autonomous on-ramp merging.</description><subject>Bayesian analysis</subject><subject>Interactive control</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Predictive control</subject><subject>Statistical inference</subject><subject>Trajectory control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjcsKwjAQRYMgKOo_DLgO1LS2bosPFBRduC9BxzZSMzpJLP69Ff0AVxfOOXA7oq_ieCJniVI9MXLuGkWRSjM1ncZ98cpP3jwRtqjZGltCY3wFi6Br2NEZazgwns23OWhfyY31WHKr52Q9Uw0XYvhA1m1FVuaNZoQ8eLJ0o-Bgbcqq0S_YW8n6docdctk-DUX3omuHo98OxHi1PM7X8s70COh8caXAtlWFmmVpliaRSuL_qjePn03r</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Knaup, Jacob</creator><creator>D'sa, Jovin</creator><creator>Behdad Chalaki</creator><creator>Tyler Naes</creator><creator>Mahjoub, Hossein Nourkhiz</creator><creator>Moradi-Pari, Ehsan</creator><creator>Tsiotras, Panagiotis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231011</creationdate><title>Active Learning with Dual Model Predictive Path-Integral Control for Interaction-Aware Autonomous Highway On-ramp Merging</title><author>Knaup, Jacob ; D'sa, Jovin ; Behdad Chalaki ; Tyler Naes ; Mahjoub, Hossein Nourkhiz ; Moradi-Pari, Ehsan ; Tsiotras, Panagiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28767640243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Interactive control</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Predictive control</topic><topic>Statistical inference</topic><topic>Trajectory control</topic><toplevel>online_resources</toplevel><creatorcontrib>Knaup, Jacob</creatorcontrib><creatorcontrib>D'sa, Jovin</creatorcontrib><creatorcontrib>Behdad Chalaki</creatorcontrib><creatorcontrib>Tyler Naes</creatorcontrib><creatorcontrib>Mahjoub, Hossein Nourkhiz</creatorcontrib><creatorcontrib>Moradi-Pari, Ehsan</creatorcontrib><creatorcontrib>Tsiotras, Panagiotis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knaup, Jacob</au><au>D'sa, Jovin</au><au>Behdad Chalaki</au><au>Tyler Naes</au><au>Mahjoub, Hossein Nourkhiz</au><au>Moradi-Pari, Ehsan</au><au>Tsiotras, Panagiotis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Active Learning with Dual Model Predictive Path-Integral Control for Interaction-Aware Autonomous Highway On-ramp Merging</atitle><jtitle>arXiv.org</jtitle><date>2023-10-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Merging into dense highway traffic for an autonomous vehicle is a complex decision-making task, wherein the vehicle must identify a potential gap and coordinate with surrounding human drivers, each of whom may exhibit diverse driving behaviors. Many existing methods consider other drivers to be dynamic obstacles and, as a result, are incapable of capturing the full intent of the human drivers via this passive planning. In this paper, we propose a novel dual control framework based on Model Predictive Path-Integral control to generate interactive trajectories. This framework incorporates a Bayesian inference approach to actively learn the agents' parameters, i.e., other drivers' model parameters. The proposed framework employs a sampling-based approach that is suitable for real-time implementation through the utilization of GPUs. We illustrate the effectiveness of our proposed methodology through comprehensive numerical simulations conducted in both high and low-fidelity simulation scenarios focusing on autonomous on-ramp merging.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2876764024 |
source | Free E- Journals |
subjects | Bayesian analysis Interactive control Mathematical models Parameters Predictive control Statistical inference Trajectory control |
title | Active Learning with Dual Model Predictive Path-Integral Control for Interaction-Aware Autonomous Highway On-ramp Merging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Active%20Learning%20with%20Dual%20Model%20Predictive%20Path-Integral%20Control%20for%20Interaction-Aware%20Autonomous%20Highway%20On-ramp%20Merging&rft.jtitle=arXiv.org&rft.au=Knaup,%20Jacob&rft.date=2023-10-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2876764024%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876764024&rft_id=info:pmid/&rfr_iscdi=true |