Equitable and Fair Performance Evaluation of Whale Optimization Algorithm

It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated. Nonetheless, evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons. Choosing and initializing essential parameters, such as the size issues o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Hassan, Bryar A, Rashid, Tarik A, Ahmed, Aram, Qader, Shko M, Jaffer Majidpour, Mohmad Hussein Abdalla, Tay, Noor, Hamarashid, Hozan K, Sidqi, Haval, Noori, Kaniaw A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hassan, Bryar A
Rashid, Tarik A
Ahmed, Aram
Qader, Shko M
Jaffer Majidpour
Mohmad Hussein Abdalla
Tay, Noor
Hamarashid, Hozan K
Sidqi, Haval
Noori, Kaniaw A
description It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated. Nonetheless, evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons. Choosing and initializing essential parameters, such as the size issues of the search area for each method and the number of iterations required to reduce the issues, might be particularly challenging. As a result, this chapter aims to contrast the Whale Optimization Algorithm (WOA) with the most recent algorithms on a selected set of benchmark problems with varying benchmark function hardness scores and initial control parameters comparable problem dimensions and search space. When solving a wide range of numerical optimization problems with varying difficulty scores, dimensions, and search areas, the experimental findings suggest that WOA may be statistically superior or inferior to the preceding algorithms referencing convergence speed, running time, and memory utilization.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876762508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876762508</sourcerecordid><originalsourceid>FETCH-proquest_journals_28767625083</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxBf72Yq06EoXgsvy1NSmpEmbjwtPb0EP4GpgZmYkAs43SbEFWJDYuY4xBlkOacojcizHID3elKCoH7RCaelZ2MbYHvVd0PKFKqCXRlPT0GuL03gavOzl-2t36mms9G2_IvMGlRPxj0uyrsrL_pAM1oxBOF93Jlg9pRqKPMszSFnB_7s-gMw8gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876762508</pqid></control><display><type>article</type><title>Equitable and Fair Performance Evaluation of Whale Optimization Algorithm</title><source>Free E- Journals</source><creator>Hassan, Bryar A ; Rashid, Tarik A ; Ahmed, Aram ; Qader, Shko M ; Jaffer Majidpour ; Mohmad Hussein Abdalla ; Tay, Noor ; Hamarashid, Hozan K ; Sidqi, Haval ; Noori, Kaniaw A</creator><creatorcontrib>Hassan, Bryar A ; Rashid, Tarik A ; Ahmed, Aram ; Qader, Shko M ; Jaffer Majidpour ; Mohmad Hussein Abdalla ; Tay, Noor ; Hamarashid, Hozan K ; Sidqi, Haval ; Noori, Kaniaw A</creatorcontrib><description>It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated. Nonetheless, evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons. Choosing and initializing essential parameters, such as the size issues of the search area for each method and the number of iterations required to reduce the issues, might be particularly challenging. As a result, this chapter aims to contrast the Whale Optimization Algorithm (WOA) with the most recent algorithms on a selected set of benchmark problems with varying benchmark function hardness scores and initial control parameters comparable problem dimensions and search space. When solving a wide range of numerical optimization problems with varying difficulty scores, dimensions, and search areas, the experimental findings suggest that WOA may be statistically superior or inferior to the preceding algorithms referencing convergence speed, running time, and memory utilization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Benchmarks ; Optimization ; Parameters ; Performance evaluation ; Searching</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hassan, Bryar A</creatorcontrib><creatorcontrib>Rashid, Tarik A</creatorcontrib><creatorcontrib>Ahmed, Aram</creatorcontrib><creatorcontrib>Qader, Shko M</creatorcontrib><creatorcontrib>Jaffer Majidpour</creatorcontrib><creatorcontrib>Mohmad Hussein Abdalla</creatorcontrib><creatorcontrib>Tay, Noor</creatorcontrib><creatorcontrib>Hamarashid, Hozan K</creatorcontrib><creatorcontrib>Sidqi, Haval</creatorcontrib><creatorcontrib>Noori, Kaniaw A</creatorcontrib><title>Equitable and Fair Performance Evaluation of Whale Optimization Algorithm</title><title>arXiv.org</title><description>It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated. Nonetheless, evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons. Choosing and initializing essential parameters, such as the size issues of the search area for each method and the number of iterations required to reduce the issues, might be particularly challenging. As a result, this chapter aims to contrast the Whale Optimization Algorithm (WOA) with the most recent algorithms on a selected set of benchmark problems with varying benchmark function hardness scores and initial control parameters comparable problem dimensions and search space. When solving a wide range of numerical optimization problems with varying difficulty scores, dimensions, and search areas, the experimental findings suggest that WOA may be statistically superior or inferior to the preceding algorithms referencing convergence speed, running time, and memory utilization.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxBf72Yq06EoXgsvy1NSmpEmbjwtPb0EP4GpgZmYkAs43SbEFWJDYuY4xBlkOacojcizHID3elKCoH7RCaelZ2MbYHvVd0PKFKqCXRlPT0GuL03gavOzl-2t36mms9G2_IvMGlRPxj0uyrsrL_pAM1oxBOF93Jlg9pRqKPMszSFnB_7s-gMw8gw</recordid><startdate>20230904</startdate><enddate>20230904</enddate><creator>Hassan, Bryar A</creator><creator>Rashid, Tarik A</creator><creator>Ahmed, Aram</creator><creator>Qader, Shko M</creator><creator>Jaffer Majidpour</creator><creator>Mohmad Hussein Abdalla</creator><creator>Tay, Noor</creator><creator>Hamarashid, Hozan K</creator><creator>Sidqi, Haval</creator><creator>Noori, Kaniaw A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230904</creationdate><title>Equitable and Fair Performance Evaluation of Whale Optimization Algorithm</title><author>Hassan, Bryar A ; Rashid, Tarik A ; Ahmed, Aram ; Qader, Shko M ; Jaffer Majidpour ; Mohmad Hussein Abdalla ; Tay, Noor ; Hamarashid, Hozan K ; Sidqi, Haval ; Noori, Kaniaw A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28767625083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Bryar A</creatorcontrib><creatorcontrib>Rashid, Tarik A</creatorcontrib><creatorcontrib>Ahmed, Aram</creatorcontrib><creatorcontrib>Qader, Shko M</creatorcontrib><creatorcontrib>Jaffer Majidpour</creatorcontrib><creatorcontrib>Mohmad Hussein Abdalla</creatorcontrib><creatorcontrib>Tay, Noor</creatorcontrib><creatorcontrib>Hamarashid, Hozan K</creatorcontrib><creatorcontrib>Sidqi, Haval</creatorcontrib><creatorcontrib>Noori, Kaniaw A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Bryar A</au><au>Rashid, Tarik A</au><au>Ahmed, Aram</au><au>Qader, Shko M</au><au>Jaffer Majidpour</au><au>Mohmad Hussein Abdalla</au><au>Tay, Noor</au><au>Hamarashid, Hozan K</au><au>Sidqi, Haval</au><au>Noori, Kaniaw A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Equitable and Fair Performance Evaluation of Whale Optimization Algorithm</atitle><jtitle>arXiv.org</jtitle><date>2023-09-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated. Nonetheless, evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons. Choosing and initializing essential parameters, such as the size issues of the search area for each method and the number of iterations required to reduce the issues, might be particularly challenging. As a result, this chapter aims to contrast the Whale Optimization Algorithm (WOA) with the most recent algorithms on a selected set of benchmark problems with varying benchmark function hardness scores and initial control parameters comparable problem dimensions and search space. When solving a wide range of numerical optimization problems with varying difficulty scores, dimensions, and search areas, the experimental findings suggest that WOA may be statistically superior or inferior to the preceding algorithms referencing convergence speed, running time, and memory utilization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2876762508
source Free E- Journals
subjects Algorithms
Benchmarks
Optimization
Parameters
Performance evaluation
Searching
title Equitable and Fair Performance Evaluation of Whale Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Equitable%20and%20Fair%20Performance%20Evaluation%20of%20Whale%20Optimization%20Algorithm&rft.jtitle=arXiv.org&rft.au=Hassan,%20Bryar%20A&rft.date=2023-09-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2876762508%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876762508&rft_id=info:pmid/&rfr_iscdi=true