Modified Accuracy of RANS Modeling of Urban Pollutant Flow within Generic Building Clusters Using a High-Quality Full-Scale Dispersion Dataset
To improve the reliability of the computational fluid dynamics (CFD) models of wind-driven pollutant dispersion within urban settings, a re-calibration study is conducted to optimize the standard k−ε model. A modified optimization framework based on the genetic algorithm is adapted to alleviate the...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-10, Vol.15 (19), p.14317 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 14317 |
container_title | Sustainability |
container_volume | 15 |
creator | Kavian Nezhad, Mohammad Reza RahnamayBahambary, Khashayar Lange, Carlos F Fleck, Brian A |
description | To improve the reliability of the computational fluid dynamics (CFD) models of wind-driven pollutant dispersion within urban settings, a re-calibration study is conducted to optimize the standard k−ε model. A modified optimization framework based on the genetic algorithm is adapted to alleviate the computational expenses and to further identify ranges for each empirical coefficient to achieve the most reliable and accurate predictions. A robust objective function is defined, incorporating both the flow parameters and pollutant concentration through several linear and logarithmic measures. The coefficients are trained using high-quality and full-scale tracer experiments in a mock urban arrangement simulating a building array. The proposed ranges are 0.14≤Cμ≤0.15, 1.30≤Cε1≤1.46, 1.68≤Cε2≤1.80, 1.12≤σε≤1.20, and 0.87≤σk≤1.00. A thorough evaluation of the predicted flow and concentration fields indicates the modified closure is effective. The fraction of predictions within the acceptable ranges from measurements has increased by 8% for pollutant concentration and 27% for turbulence kinetic energy. The generality of the calibrated model is further tested by modeling additional cases with different meteorological conditions, in which the calculated validation metrics attest to the noteworthy improvements in predictions. |
doi_str_mv | 10.3390/su151914317 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2876621327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772530002</galeid><sourcerecordid>A772530002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-9e7a40ea62e28de6655a4c6cfc01e0be933690a8ffe5bf281292f18fda32a69f3</originalsourceid><addsrcrecordid>eNpVkc1OGzEQx1cVlYqAU1_AUk9VtcEfWe_uMQ0EkIC2pDmvJt5xMDJ28IdoXqLPXEfpAcaHGc_8_vZopqo-MzoRoqfnMbOG9WwqWPuhOua0ZTWjDT16E3-qzmJ8osWEKKg8rv7e-dFogyOZKZUDqB3xmjzM7pekVNAat9knVmENjvz01uYELpGF9a_k1aRH48gVOgxGke_Z2HHPz22OCUMkq7i_Ark2m8f6VwZr0o4ssrX1UoFFcmHitnDGO3IBCSKm0-qjBhvx7L8_qVaLy9_z6_r2x9XNfHZbK8H7VPfYwpQiSI68G1HKpoGpkkorypCusRdC9hQ6rbFZa94x3nPNOj2C4CB7LU6qL4d3t8G_ZIxpePI5uPLlwLtWSs4Ebws1OVCb0u1gnPapTKicEZ-N8g61KflZ2_JGlJnyIvj6TlCYhH_SBnKMw83y4T377cCq4GMMqIdtMM8QdgOjw36hw5uFin8mMJJm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876621327</pqid></control><display><type>article</type><title>Modified Accuracy of RANS Modeling of Urban Pollutant Flow within Generic Building Clusters Using a High-Quality Full-Scale Dispersion Dataset</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kavian Nezhad, Mohammad Reza ; RahnamayBahambary, Khashayar ; Lange, Carlos F ; Fleck, Brian A</creator><creatorcontrib>Kavian Nezhad, Mohammad Reza ; RahnamayBahambary, Khashayar ; Lange, Carlos F ; Fleck, Brian A</creatorcontrib><description>To improve the reliability of the computational fluid dynamics (CFD) models of wind-driven pollutant dispersion within urban settings, a re-calibration study is conducted to optimize the standard k−ε model. A modified optimization framework based on the genetic algorithm is adapted to alleviate the computational expenses and to further identify ranges for each empirical coefficient to achieve the most reliable and accurate predictions. A robust objective function is defined, incorporating both the flow parameters and pollutant concentration through several linear and logarithmic measures. The coefficients are trained using high-quality and full-scale tracer experiments in a mock urban arrangement simulating a building array. The proposed ranges are 0.14≤Cμ≤0.15, 1.30≤Cε1≤1.46, 1.68≤Cε2≤1.80, 1.12≤σε≤1.20, and 0.87≤σk≤1.00. A thorough evaluation of the predicted flow and concentration fields indicates the modified closure is effective. The fraction of predictions within the acceptable ranges from measurements has increased by 8% for pollutant concentration and 27% for turbulence kinetic energy. The generality of the calibrated model is further tested by modeling additional cases with different meteorological conditions, in which the calculated validation metrics attest to the noteworthy improvements in predictions.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su151914317</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Air quality ; Atmospheric boundary layer ; Calibration ; Construction ; Force and energy ; Optimization ; Outdoor air quality ; Pollutants ; Research methodology ; Shear stress ; Ventilation</subject><ispartof>Sustainability, 2023-10, Vol.15 (19), p.14317</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-9e7a40ea62e28de6655a4c6cfc01e0be933690a8ffe5bf281292f18fda32a69f3</cites><orcidid>0000-0001-9390-8728 ; 0000-0003-0167-4878 ; 0000-0002-6039-8036 ; 0000-0002-2747-3719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Kavian Nezhad, Mohammad Reza</creatorcontrib><creatorcontrib>RahnamayBahambary, Khashayar</creatorcontrib><creatorcontrib>Lange, Carlos F</creatorcontrib><creatorcontrib>Fleck, Brian A</creatorcontrib><title>Modified Accuracy of RANS Modeling of Urban Pollutant Flow within Generic Building Clusters Using a High-Quality Full-Scale Dispersion Dataset</title><title>Sustainability</title><description>To improve the reliability of the computational fluid dynamics (CFD) models of wind-driven pollutant dispersion within urban settings, a re-calibration study is conducted to optimize the standard k−ε model. A modified optimization framework based on the genetic algorithm is adapted to alleviate the computational expenses and to further identify ranges for each empirical coefficient to achieve the most reliable and accurate predictions. A robust objective function is defined, incorporating both the flow parameters and pollutant concentration through several linear and logarithmic measures. The coefficients are trained using high-quality and full-scale tracer experiments in a mock urban arrangement simulating a building array. The proposed ranges are 0.14≤Cμ≤0.15, 1.30≤Cε1≤1.46, 1.68≤Cε2≤1.80, 1.12≤σε≤1.20, and 0.87≤σk≤1.00. A thorough evaluation of the predicted flow and concentration fields indicates the modified closure is effective. The fraction of predictions within the acceptable ranges from measurements has increased by 8% for pollutant concentration and 27% for turbulence kinetic energy. The generality of the calibrated model is further tested by modeling additional cases with different meteorological conditions, in which the calculated validation metrics attest to the noteworthy improvements in predictions.</description><subject>Accuracy</subject><subject>Air quality</subject><subject>Atmospheric boundary layer</subject><subject>Calibration</subject><subject>Construction</subject><subject>Force and energy</subject><subject>Optimization</subject><subject>Outdoor air quality</subject><subject>Pollutants</subject><subject>Research methodology</subject><subject>Shear stress</subject><subject>Ventilation</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkc1OGzEQx1cVlYqAU1_AUk9VtcEfWe_uMQ0EkIC2pDmvJt5xMDJ28IdoXqLPXEfpAcaHGc_8_vZopqo-MzoRoqfnMbOG9WwqWPuhOua0ZTWjDT16E3-qzmJ8osWEKKg8rv7e-dFogyOZKZUDqB3xmjzM7pekVNAat9knVmENjvz01uYELpGF9a_k1aRH48gVOgxGke_Z2HHPz22OCUMkq7i_Ark2m8f6VwZr0o4ssrX1UoFFcmHitnDGO3IBCSKm0-qjBhvx7L8_qVaLy9_z6_r2x9XNfHZbK8H7VPfYwpQiSI68G1HKpoGpkkorypCusRdC9hQ6rbFZa94x3nPNOj2C4CB7LU6qL4d3t8G_ZIxpePI5uPLlwLtWSs4Ebws1OVCb0u1gnPapTKicEZ-N8g61KflZ2_JGlJnyIvj6TlCYhH_SBnKMw83y4T377cCq4GMMqIdtMM8QdgOjw36hw5uFin8mMJJm</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kavian Nezhad, Mohammad Reza</creator><creator>RahnamayBahambary, Khashayar</creator><creator>Lange, Carlos F</creator><creator>Fleck, Brian A</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9390-8728</orcidid><orcidid>https://orcid.org/0000-0003-0167-4878</orcidid><orcidid>https://orcid.org/0000-0002-6039-8036</orcidid><orcidid>https://orcid.org/0000-0002-2747-3719</orcidid></search><sort><creationdate>20231001</creationdate><title>Modified Accuracy of RANS Modeling of Urban Pollutant Flow within Generic Building Clusters Using a High-Quality Full-Scale Dispersion Dataset</title><author>Kavian Nezhad, Mohammad Reza ; RahnamayBahambary, Khashayar ; Lange, Carlos F ; Fleck, Brian A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-9e7a40ea62e28de6655a4c6cfc01e0be933690a8ffe5bf281292f18fda32a69f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Air quality</topic><topic>Atmospheric boundary layer</topic><topic>Calibration</topic><topic>Construction</topic><topic>Force and energy</topic><topic>Optimization</topic><topic>Outdoor air quality</topic><topic>Pollutants</topic><topic>Research methodology</topic><topic>Shear stress</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavian Nezhad, Mohammad Reza</creatorcontrib><creatorcontrib>RahnamayBahambary, Khashayar</creatorcontrib><creatorcontrib>Lange, Carlos F</creatorcontrib><creatorcontrib>Fleck, Brian A</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavian Nezhad, Mohammad Reza</au><au>RahnamayBahambary, Khashayar</au><au>Lange, Carlos F</au><au>Fleck, Brian A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Accuracy of RANS Modeling of Urban Pollutant Flow within Generic Building Clusters Using a High-Quality Full-Scale Dispersion Dataset</atitle><jtitle>Sustainability</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>15</volume><issue>19</issue><spage>14317</spage><pages>14317-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>To improve the reliability of the computational fluid dynamics (CFD) models of wind-driven pollutant dispersion within urban settings, a re-calibration study is conducted to optimize the standard k−ε model. A modified optimization framework based on the genetic algorithm is adapted to alleviate the computational expenses and to further identify ranges for each empirical coefficient to achieve the most reliable and accurate predictions. A robust objective function is defined, incorporating both the flow parameters and pollutant concentration through several linear and logarithmic measures. The coefficients are trained using high-quality and full-scale tracer experiments in a mock urban arrangement simulating a building array. The proposed ranges are 0.14≤Cμ≤0.15, 1.30≤Cε1≤1.46, 1.68≤Cε2≤1.80, 1.12≤σε≤1.20, and 0.87≤σk≤1.00. A thorough evaluation of the predicted flow and concentration fields indicates the modified closure is effective. The fraction of predictions within the acceptable ranges from measurements has increased by 8% for pollutant concentration and 27% for turbulence kinetic energy. The generality of the calibrated model is further tested by modeling additional cases with different meteorological conditions, in which the calculated validation metrics attest to the noteworthy improvements in predictions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su151914317</doi><orcidid>https://orcid.org/0000-0001-9390-8728</orcidid><orcidid>https://orcid.org/0000-0003-0167-4878</orcidid><orcidid>https://orcid.org/0000-0002-6039-8036</orcidid><orcidid>https://orcid.org/0000-0002-2747-3719</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-10, Vol.15 (19), p.14317 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2876621327 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Air quality Atmospheric boundary layer Calibration Construction Force and energy Optimization Outdoor air quality Pollutants Research methodology Shear stress Ventilation |
title | Modified Accuracy of RANS Modeling of Urban Pollutant Flow within Generic Building Clusters Using a High-Quality Full-Scale Dispersion Dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T22%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Accuracy%20of%20RANS%20Modeling%20of%20Urban%20Pollutant%20Flow%20within%20Generic%20Building%20Clusters%20Using%20a%20High-Quality%20Full-Scale%20Dispersion%20Dataset&rft.jtitle=Sustainability&rft.au=Kavian%20Nezhad,%20Mohammad%20Reza&rft.date=2023-10-01&rft.volume=15&rft.issue=19&rft.spage=14317&rft.pages=14317-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su151914317&rft_dat=%3Cgale_proqu%3EA772530002%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876621327&rft_id=info:pmid/&rft_galeid=A772530002&rfr_iscdi=true |