KwaiYiiMath: Technical Report

Recent advancements in large language models (LLMs) have demonstrated remarkable abilities in handling a variety of natural language processing (NLP) downstream tasks, even on mathematical tasks requiring multi-step reasoning. In this report, we introduce the KwaiYiiMath which enhances the mathemati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Fu, Jiayi, Lin, Lei, Gao, Xiaoyang, Liu, Pengli, Chen, Zhengzong, Yang, Zhirui, Zhang, Shengnan, Zheng, Xue, Li, Yan, Liu, Yuliang, Ye, Xucheng, Liao, Yiqiao, Liao, Chao, Chen, Bin, Song, Chengru, Wan, Junchen, Lin, Zijia, Zhang, Fuzheng, Wang, Zhongyuan, Zhang, Di, Gai, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fu, Jiayi
Lin, Lei
Gao, Xiaoyang
Liu, Pengli
Chen, Zhengzong
Yang, Zhirui
Zhang, Shengnan
Zheng, Xue
Li, Yan
Liu, Yuliang
Ye, Xucheng
Liao, Yiqiao
Liao, Chao
Chen, Bin
Song, Chengru
Wan, Junchen
Lin, Zijia
Zhang, Fuzheng
Wang, Zhongyuan
Zhang, Di
Gai, Kun
description Recent advancements in large language models (LLMs) have demonstrated remarkable abilities in handling a variety of natural language processing (NLP) downstream tasks, even on mathematical tasks requiring multi-step reasoning. In this report, we introduce the KwaiYiiMath which enhances the mathematical reasoning abilities of KwaiYiiBase1, by applying Supervised Fine-Tuning (SFT) and Reinforced Learning from Human Feedback (RLHF), including on both English and Chinese mathematical tasks. Meanwhile, we also constructed a small-scale Chinese primary school mathematics test set (named KMath), consisting of 188 examples to evaluate the correctness of the problem-solving process generated by the models. Empirical studies demonstrate that KwaiYiiMath can achieve state-of-the-art (SOTA) performance on GSM8k, CMath, and KMath compared with the similar size models, respectively.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876195169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876195169</sourcerecordid><originalsourceid>FETCH-proquest_journals_28761951693</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9S5PzIzMzPRNLMmwUghJTc7Iy0xOzFEISi3ILyrhYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwtzM0NLU0MzS2PiVAEAQf4r0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876195169</pqid></control><display><type>article</type><title>KwaiYiiMath: Technical Report</title><source>Free E- Journals</source><creator>Fu, Jiayi ; Lin, Lei ; Gao, Xiaoyang ; Liu, Pengli ; Chen, Zhengzong ; Yang, Zhirui ; Zhang, Shengnan ; Zheng, Xue ; Li, Yan ; Liu, Yuliang ; Ye, Xucheng ; Liao, Yiqiao ; Liao, Chao ; Chen, Bin ; Song, Chengru ; Wan, Junchen ; Lin, Zijia ; Zhang, Fuzheng ; Wang, Zhongyuan ; Zhang, Di ; Gai, Kun</creator><creatorcontrib>Fu, Jiayi ; Lin, Lei ; Gao, Xiaoyang ; Liu, Pengli ; Chen, Zhengzong ; Yang, Zhirui ; Zhang, Shengnan ; Zheng, Xue ; Li, Yan ; Liu, Yuliang ; Ye, Xucheng ; Liao, Yiqiao ; Liao, Chao ; Chen, Bin ; Song, Chengru ; Wan, Junchen ; Lin, Zijia ; Zhang, Fuzheng ; Wang, Zhongyuan ; Zhang, Di ; Gai, Kun</creatorcontrib><description>Recent advancements in large language models (LLMs) have demonstrated remarkable abilities in handling a variety of natural language processing (NLP) downstream tasks, even on mathematical tasks requiring multi-step reasoning. In this report, we introduce the KwaiYiiMath which enhances the mathematical reasoning abilities of KwaiYiiBase1, by applying Supervised Fine-Tuning (SFT) and Reinforced Learning from Human Feedback (RLHF), including on both English and Chinese mathematical tasks. Meanwhile, we also constructed a small-scale Chinese primary school mathematics test set (named KMath), consisting of 188 examples to evaluate the correctness of the problem-solving process generated by the models. Empirical studies demonstrate that KwaiYiiMath can achieve state-of-the-art (SOTA) performance on GSM8k, CMath, and KMath compared with the similar size models, respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Large language models ; Mathematical analysis ; Natural language processing ; Reasoning</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fu, Jiayi</creatorcontrib><creatorcontrib>Lin, Lei</creatorcontrib><creatorcontrib>Gao, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Pengli</creatorcontrib><creatorcontrib>Chen, Zhengzong</creatorcontrib><creatorcontrib>Yang, Zhirui</creatorcontrib><creatorcontrib>Zhang, Shengnan</creatorcontrib><creatorcontrib>Zheng, Xue</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Yuliang</creatorcontrib><creatorcontrib>Ye, Xucheng</creatorcontrib><creatorcontrib>Liao, Yiqiao</creatorcontrib><creatorcontrib>Liao, Chao</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Song, Chengru</creatorcontrib><creatorcontrib>Wan, Junchen</creatorcontrib><creatorcontrib>Lin, Zijia</creatorcontrib><creatorcontrib>Zhang, Fuzheng</creatorcontrib><creatorcontrib>Wang, Zhongyuan</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Gai, Kun</creatorcontrib><title>KwaiYiiMath: Technical Report</title><title>arXiv.org</title><description>Recent advancements in large language models (LLMs) have demonstrated remarkable abilities in handling a variety of natural language processing (NLP) downstream tasks, even on mathematical tasks requiring multi-step reasoning. In this report, we introduce the KwaiYiiMath which enhances the mathematical reasoning abilities of KwaiYiiBase1, by applying Supervised Fine-Tuning (SFT) and Reinforced Learning from Human Feedback (RLHF), including on both English and Chinese mathematical tasks. Meanwhile, we also constructed a small-scale Chinese primary school mathematics test set (named KMath), consisting of 188 examples to evaluate the correctness of the problem-solving process generated by the models. Empirical studies demonstrate that KwaiYiiMath can achieve state-of-the-art (SOTA) performance on GSM8k, CMath, and KMath compared with the similar size models, respectively.</description><subject>Large language models</subject><subject>Mathematical analysis</subject><subject>Natural language processing</subject><subject>Reasoning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9S5PzIzMzPRNLMmwUghJTc7Iy0xOzFEISi3ILyrhYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwtzM0NLU0MzS2PiVAEAQf4r0A</recordid><startdate>20231019</startdate><enddate>20231019</enddate><creator>Fu, Jiayi</creator><creator>Lin, Lei</creator><creator>Gao, Xiaoyang</creator><creator>Liu, Pengli</creator><creator>Chen, Zhengzong</creator><creator>Yang, Zhirui</creator><creator>Zhang, Shengnan</creator><creator>Zheng, Xue</creator><creator>Li, Yan</creator><creator>Liu, Yuliang</creator><creator>Ye, Xucheng</creator><creator>Liao, Yiqiao</creator><creator>Liao, Chao</creator><creator>Chen, Bin</creator><creator>Song, Chengru</creator><creator>Wan, Junchen</creator><creator>Lin, Zijia</creator><creator>Zhang, Fuzheng</creator><creator>Wang, Zhongyuan</creator><creator>Zhang, Di</creator><creator>Gai, Kun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231019</creationdate><title>KwaiYiiMath: Technical Report</title><author>Fu, Jiayi ; Lin, Lei ; Gao, Xiaoyang ; Liu, Pengli ; Chen, Zhengzong ; Yang, Zhirui ; Zhang, Shengnan ; Zheng, Xue ; Li, Yan ; Liu, Yuliang ; Ye, Xucheng ; Liao, Yiqiao ; Liao, Chao ; Chen, Bin ; Song, Chengru ; Wan, Junchen ; Lin, Zijia ; Zhang, Fuzheng ; Wang, Zhongyuan ; Zhang, Di ; Gai, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28761951693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Large language models</topic><topic>Mathematical analysis</topic><topic>Natural language processing</topic><topic>Reasoning</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Jiayi</creatorcontrib><creatorcontrib>Lin, Lei</creatorcontrib><creatorcontrib>Gao, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Pengli</creatorcontrib><creatorcontrib>Chen, Zhengzong</creatorcontrib><creatorcontrib>Yang, Zhirui</creatorcontrib><creatorcontrib>Zhang, Shengnan</creatorcontrib><creatorcontrib>Zheng, Xue</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Yuliang</creatorcontrib><creatorcontrib>Ye, Xucheng</creatorcontrib><creatorcontrib>Liao, Yiqiao</creatorcontrib><creatorcontrib>Liao, Chao</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Song, Chengru</creatorcontrib><creatorcontrib>Wan, Junchen</creatorcontrib><creatorcontrib>Lin, Zijia</creatorcontrib><creatorcontrib>Zhang, Fuzheng</creatorcontrib><creatorcontrib>Wang, Zhongyuan</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Gai, Kun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Jiayi</au><au>Lin, Lei</au><au>Gao, Xiaoyang</au><au>Liu, Pengli</au><au>Chen, Zhengzong</au><au>Yang, Zhirui</au><au>Zhang, Shengnan</au><au>Zheng, Xue</au><au>Li, Yan</au><au>Liu, Yuliang</au><au>Ye, Xucheng</au><au>Liao, Yiqiao</au><au>Liao, Chao</au><au>Chen, Bin</au><au>Song, Chengru</au><au>Wan, Junchen</au><au>Lin, Zijia</au><au>Zhang, Fuzheng</au><au>Wang, Zhongyuan</au><au>Zhang, Di</au><au>Gai, Kun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>KwaiYiiMath: Technical Report</atitle><jtitle>arXiv.org</jtitle><date>2023-10-19</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Recent advancements in large language models (LLMs) have demonstrated remarkable abilities in handling a variety of natural language processing (NLP) downstream tasks, even on mathematical tasks requiring multi-step reasoning. In this report, we introduce the KwaiYiiMath which enhances the mathematical reasoning abilities of KwaiYiiBase1, by applying Supervised Fine-Tuning (SFT) and Reinforced Learning from Human Feedback (RLHF), including on both English and Chinese mathematical tasks. Meanwhile, we also constructed a small-scale Chinese primary school mathematics test set (named KMath), consisting of 188 examples to evaluate the correctness of the problem-solving process generated by the models. Empirical studies demonstrate that KwaiYiiMath can achieve state-of-the-art (SOTA) performance on GSM8k, CMath, and KMath compared with the similar size models, respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2876195169
source Free E- Journals
subjects Large language models
Mathematical analysis
Natural language processing
Reasoning
title KwaiYiiMath: Technical Report
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=KwaiYiiMath:%20Technical%20Report&rft.jtitle=arXiv.org&rft.au=Fu,%20Jiayi&rft.date=2023-10-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2876195169%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876195169&rft_id=info:pmid/&rfr_iscdi=true