Improving Contrastive Learning of Sentence Embeddings with Focal-InfoNCE
The recent success of SimCSE has greatly advanced state-of-the-art sentence representations. However, the original formulation of SimCSE does not fully exploit the potential of hard negative samples in contrastive learning. This study introduces an unsupervised contrastive learning framework that co...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hou, Pengyue Li, Xingyu |
description | The recent success of SimCSE has greatly advanced state-of-the-art sentence representations. However, the original formulation of SimCSE does not fully exploit the potential of hard negative samples in contrastive learning. This study introduces an unsupervised contrastive learning framework that combines SimCSE with hard negative mining, aiming to enhance the quality of sentence embeddings. The proposed focal-InfoNCE function introduces self-paced modulation terms in the contrastive objective, downweighting the loss associated with easy negatives and encouraging the model focusing on hard negatives. Experimentation on various STS benchmarks shows that our method improves sentence embeddings in terms of Spearman's correlation and representation alignment and uniformity. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876186971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876186971</sourcerecordid><originalsourceid>FETCH-proquest_journals_28761869713</originalsourceid><addsrcrecordid>eNqNjNEKgjAYRkcQJOU7DLoWdEu3rkVRiG7qXpb-lqL_apv2-hn0AF0dOOfjWxGPcR4F8sDYhvjW9mEYskSwOOYeKcrxafTc4Z2mGp1R1nUz0BMog1-pW3oBdIA10Gy8QdMs1tJ35x4017UaghJbfU6zHVm3arDg_7gl-zy7pkWw3L8msK7q9WRwSRWTIolkchQR_2_1ATK-O8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876186971</pqid></control><display><type>article</type><title>Improving Contrastive Learning of Sentence Embeddings with Focal-InfoNCE</title><source>Freely Accessible Journals</source><creator>Hou, Pengyue ; Li, Xingyu</creator><creatorcontrib>Hou, Pengyue ; Li, Xingyu</creatorcontrib><description>The recent success of SimCSE has greatly advanced state-of-the-art sentence representations. However, the original formulation of SimCSE does not fully exploit the potential of hard negative samples in contrastive learning. This study introduces an unsupervised contrastive learning framework that combines SimCSE with hard negative mining, aiming to enhance the quality of sentence embeddings. The proposed focal-InfoNCE function introduces self-paced modulation terms in the contrastive objective, downweighting the loss associated with easy negatives and encouraging the model focusing on hard negatives. Experimentation on various STS benchmarks shows that our method improves sentence embeddings in terms of Spearman's correlation and representation alignment and uniformity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Learning ; Representations ; Sentences</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hou, Pengyue</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><title>Improving Contrastive Learning of Sentence Embeddings with Focal-InfoNCE</title><title>arXiv.org</title><description>The recent success of SimCSE has greatly advanced state-of-the-art sentence representations. However, the original formulation of SimCSE does not fully exploit the potential of hard negative samples in contrastive learning. This study introduces an unsupervised contrastive learning framework that combines SimCSE with hard negative mining, aiming to enhance the quality of sentence embeddings. The proposed focal-InfoNCE function introduces self-paced modulation terms in the contrastive objective, downweighting the loss associated with easy negatives and encouraging the model focusing on hard negatives. Experimentation on various STS benchmarks shows that our method improves sentence embeddings in terms of Spearman's correlation and representation alignment and uniformity.</description><subject>Learning</subject><subject>Representations</subject><subject>Sentences</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjNEKgjAYRkcQJOU7DLoWdEu3rkVRiG7qXpb-lqL_apv2-hn0AF0dOOfjWxGPcR4F8sDYhvjW9mEYskSwOOYeKcrxafTc4Z2mGp1R1nUz0BMog1-pW3oBdIA10Gy8QdMs1tJ35x4017UaghJbfU6zHVm3arDg_7gl-zy7pkWw3L8msK7q9WRwSRWTIolkchQR_2_1ATK-O8Q</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Hou, Pengyue</creator><creator>Li, Xingyu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231020</creationdate><title>Improving Contrastive Learning of Sentence Embeddings with Focal-InfoNCE</title><author>Hou, Pengyue ; Li, Xingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28761869713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Learning</topic><topic>Representations</topic><topic>Sentences</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, Pengyue</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Pengyue</au><au>Li, Xingyu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving Contrastive Learning of Sentence Embeddings with Focal-InfoNCE</atitle><jtitle>arXiv.org</jtitle><date>2023-10-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The recent success of SimCSE has greatly advanced state-of-the-art sentence representations. However, the original formulation of SimCSE does not fully exploit the potential of hard negative samples in contrastive learning. This study introduces an unsupervised contrastive learning framework that combines SimCSE with hard negative mining, aiming to enhance the quality of sentence embeddings. The proposed focal-InfoNCE function introduces self-paced modulation terms in the contrastive objective, downweighting the loss associated with easy negatives and encouraging the model focusing on hard negatives. Experimentation on various STS benchmarks shows that our method improves sentence embeddings in terms of Spearman's correlation and representation alignment and uniformity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2876186971 |
source | Freely Accessible Journals |
subjects | Learning Representations Sentences |
title | Improving Contrastive Learning of Sentence Embeddings with Focal-InfoNCE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%20Contrastive%20Learning%20of%20Sentence%20Embeddings%20with%20Focal-InfoNCE&rft.jtitle=arXiv.org&rft.au=Hou,%20Pengyue&rft.date=2023-10-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2876186971%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876186971&rft_id=info:pmid/&rfr_iscdi=true |