Flexible entangled state generation in linear optics

Fault-tolerant quantum computation can be achieved by creating constant-sized, entangled resource states and performing entangling measurements on subsets of their qubits. Linear optical quantum computers can be designed based on this approach, even though entangling operations at the qubit level ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Pankovich, Brendan, Neville, Alex, Kan, Angus, Srikrishna Omkar, Kwok Ho Wan, Brádler, Kamil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pankovich, Brendan
Neville, Alex
Kan, Angus
Srikrishna Omkar
Kwok Ho Wan
Brádler, Kamil
description Fault-tolerant quantum computation can be achieved by creating constant-sized, entangled resource states and performing entangling measurements on subsets of their qubits. Linear optical quantum computers can be designed based on this approach, even though entangling operations at the qubit level are non-deterministic in this platform. Probabilistic generation and measurement of entangled states must be pushed beyond the required threshold by some combination of scheme optimisation, introduction of redundancy and auxiliary state assistance. We report progress in each of these areas. We explore multi-qubit fusion measurements on dual-rail photonic qubits and their role in measurement-based resource state generation, showing that it is possible to boost the success probability of photonic GHZ state analysers with single photon auxiliary states. By incorporating generators of basic entangled "seed" states, we provide a method that simplifies the process of designing and optimising generators of complex, encoded resource states by establishing links to ZX diagrams.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2875644240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875644240</sourcerecordid><originalsourceid>FETCH-proquest_journals_28756442403</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQZcF-Ik_dmLxQO4L1GnJSVMaiYFj68LD-DqLb63UQUac6o6i7hTpcistcamxbo2hbJ9oLe_BwLi7HgK9ATJLhNMxJRc9pHBMwTP5BLEJfuHHNR2dEGo_HWvjv3ldr5WS4qvlSQPc1wTf2nArq0ba9Fq89_1AXTjNNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875644240</pqid></control><display><type>article</type><title>Flexible entangled state generation in linear optics</title><source>Free E- Journals</source><creator>Pankovich, Brendan ; Neville, Alex ; Kan, Angus ; Srikrishna Omkar ; Kwok Ho Wan ; Brádler, Kamil</creator><creatorcontrib>Pankovich, Brendan ; Neville, Alex ; Kan, Angus ; Srikrishna Omkar ; Kwok Ho Wan ; Brádler, Kamil</creatorcontrib><description>Fault-tolerant quantum computation can be achieved by creating constant-sized, entangled resource states and performing entangling measurements on subsets of their qubits. Linear optical quantum computers can be designed based on this approach, even though entangling operations at the qubit level are non-deterministic in this platform. Probabilistic generation and measurement of entangled states must be pushed beyond the required threshold by some combination of scheme optimisation, introduction of redundancy and auxiliary state assistance. We report progress in each of these areas. We explore multi-qubit fusion measurements on dual-rail photonic qubits and their role in measurement-based resource state generation, showing that it is possible to boost the success probability of photonic GHZ state analysers with single photon auxiliary states. By incorporating generators of basic entangled "seed" states, we provide a method that simplifies the process of designing and optimising generators of complex, encoded resource states by establishing links to ZX diagrams.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Entangled states ; Fault tolerance ; Optimization ; Photonics ; Quantum computers ; Quantum computing ; Quantum entanglement ; Qubits (quantum computing) ; Redundancy ; Statistical analysis</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pankovich, Brendan</creatorcontrib><creatorcontrib>Neville, Alex</creatorcontrib><creatorcontrib>Kan, Angus</creatorcontrib><creatorcontrib>Srikrishna Omkar</creatorcontrib><creatorcontrib>Kwok Ho Wan</creatorcontrib><creatorcontrib>Brádler, Kamil</creatorcontrib><title>Flexible entangled state generation in linear optics</title><title>arXiv.org</title><description>Fault-tolerant quantum computation can be achieved by creating constant-sized, entangled resource states and performing entangling measurements on subsets of their qubits. Linear optical quantum computers can be designed based on this approach, even though entangling operations at the qubit level are non-deterministic in this platform. Probabilistic generation and measurement of entangled states must be pushed beyond the required threshold by some combination of scheme optimisation, introduction of redundancy and auxiliary state assistance. We report progress in each of these areas. We explore multi-qubit fusion measurements on dual-rail photonic qubits and their role in measurement-based resource state generation, showing that it is possible to boost the success probability of photonic GHZ state analysers with single photon auxiliary states. By incorporating generators of basic entangled "seed" states, we provide a method that simplifies the process of designing and optimising generators of complex, encoded resource states by establishing links to ZX diagrams.</description><subject>Entangled states</subject><subject>Fault tolerance</subject><subject>Optimization</subject><subject>Photonics</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Qubits (quantum computing)</subject><subject>Redundancy</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQZcF-Ik_dmLxQO4L1GnJSVMaiYFj68LD-DqLb63UQUac6o6i7hTpcistcamxbo2hbJ9oLe_BwLi7HgK9ATJLhNMxJRc9pHBMwTP5BLEJfuHHNR2dEGo_HWvjv3ldr5WS4qvlSQPc1wTf2nArq0ba9Fq89_1AXTjNNs</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Pankovich, Brendan</creator><creator>Neville, Alex</creator><creator>Kan, Angus</creator><creator>Srikrishna Omkar</creator><creator>Kwok Ho Wan</creator><creator>Brádler, Kamil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231010</creationdate><title>Flexible entangled state generation in linear optics</title><author>Pankovich, Brendan ; Neville, Alex ; Kan, Angus ; Srikrishna Omkar ; Kwok Ho Wan ; Brádler, Kamil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28756442403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Entangled states</topic><topic>Fault tolerance</topic><topic>Optimization</topic><topic>Photonics</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Qubits (quantum computing)</topic><topic>Redundancy</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Pankovich, Brendan</creatorcontrib><creatorcontrib>Neville, Alex</creatorcontrib><creatorcontrib>Kan, Angus</creatorcontrib><creatorcontrib>Srikrishna Omkar</creatorcontrib><creatorcontrib>Kwok Ho Wan</creatorcontrib><creatorcontrib>Brádler, Kamil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pankovich, Brendan</au><au>Neville, Alex</au><au>Kan, Angus</au><au>Srikrishna Omkar</au><au>Kwok Ho Wan</au><au>Brádler, Kamil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Flexible entangled state generation in linear optics</atitle><jtitle>arXiv.org</jtitle><date>2023-10-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Fault-tolerant quantum computation can be achieved by creating constant-sized, entangled resource states and performing entangling measurements on subsets of their qubits. Linear optical quantum computers can be designed based on this approach, even though entangling operations at the qubit level are non-deterministic in this platform. Probabilistic generation and measurement of entangled states must be pushed beyond the required threshold by some combination of scheme optimisation, introduction of redundancy and auxiliary state assistance. We report progress in each of these areas. We explore multi-qubit fusion measurements on dual-rail photonic qubits and their role in measurement-based resource state generation, showing that it is possible to boost the success probability of photonic GHZ state analysers with single photon auxiliary states. By incorporating generators of basic entangled "seed" states, we provide a method that simplifies the process of designing and optimising generators of complex, encoded resource states by establishing links to ZX diagrams.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2875644240
source Free E- Journals
subjects Entangled states
Fault tolerance
Optimization
Photonics
Quantum computers
Quantum computing
Quantum entanglement
Qubits (quantum computing)
Redundancy
Statistical analysis
title Flexible entangled state generation in linear optics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Flexible%20entangled%20state%20generation%20in%20linear%20optics&rft.jtitle=arXiv.org&rft.au=Pankovich,%20Brendan&rft.date=2023-10-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2875644240%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875644240&rft_id=info:pmid/&rfr_iscdi=true