DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening

Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Bowen, Gao, Qiang, Bo, Tan, Haichuan, Ren, Minsi, Yinjun Jia, Lu, Minsi, Liu, Jingjing, Ma, Weiying, Lan, Yanyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bowen, Gao
Qiang, Bo
Tan, Haichuan
Ren, Minsi
Yinjun Jia
Lu, Minsi
Liu, Jingjing
Ma, Weiying
Lan, Yanyan
description Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2875643121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875643121</sourcerecordid><originalsourceid>FETCH-proquest_journals_28756431213</originalsourceid><addsrcrecordid>eNqNit0KgjAYQEcQJOU7DLoWdPOPbq0oMJCUbmXIp0zGZt-2nr-CHqCrA-ecFQkY50lUpoxtSGjtHMcxywuWZTwg3RH9VNXX5kArox0K6-QLaIPGgdTRzSgYvAJ6hwXBgnbCSaNpDQK11BMdDdKHROeFou2AAF-7I-tRKAvhj1uyP5-66hItaJ4erOtn41F_Us_KIstTnrCE_3e9AYRdQKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875643121</pqid></control><display><type>article</type><title>DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening</title><source>Free E- Journals</source><creator>Bowen, Gao ; Qiang, Bo ; Tan, Haichuan ; Ren, Minsi ; Yinjun Jia ; Lu, Minsi ; Liu, Jingjing ; Ma, Weiying ; Lan, Yanyan</creator><creatorcontrib>Bowen, Gao ; Qiang, Bo ; Tan, Haichuan ; Ren, Minsi ; Yinjun Jia ; Lu, Minsi ; Liu, Jingjing ; Ma, Weiying ; Lan, Yanyan</creatorcontrib><description>Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Affinity ; Data augmentation ; Docking ; Machine learning ; Proteins ; Representations ; Screening ; Supervised learning</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bowen, Gao</creatorcontrib><creatorcontrib>Qiang, Bo</creatorcontrib><creatorcontrib>Tan, Haichuan</creatorcontrib><creatorcontrib>Ren, Minsi</creatorcontrib><creatorcontrib>Yinjun Jia</creatorcontrib><creatorcontrib>Lu, Minsi</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Ma, Weiying</creatorcontrib><creatorcontrib>Lan, Yanyan</creatorcontrib><title>DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening</title><title>arXiv.org</title><description>Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting.</description><subject>Affinity</subject><subject>Data augmentation</subject><subject>Docking</subject><subject>Machine learning</subject><subject>Proteins</subject><subject>Representations</subject><subject>Screening</subject><subject>Supervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNit0KgjAYQEcQJOU7DLoWdPOPbq0oMJCUbmXIp0zGZt-2nr-CHqCrA-ecFQkY50lUpoxtSGjtHMcxywuWZTwg3RH9VNXX5kArox0K6-QLaIPGgdTRzSgYvAJ6hwXBgnbCSaNpDQK11BMdDdKHROeFou2AAF-7I-tRKAvhj1uyP5-66hItaJ4erOtn41F_Us_KIstTnrCE_3e9AYRdQKA</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Bowen, Gao</creator><creator>Qiang, Bo</creator><creator>Tan, Haichuan</creator><creator>Ren, Minsi</creator><creator>Yinjun Jia</creator><creator>Lu, Minsi</creator><creator>Liu, Jingjing</creator><creator>Ma, Weiying</creator><creator>Lan, Yanyan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231010</creationdate><title>DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening</title><author>Bowen, Gao ; Qiang, Bo ; Tan, Haichuan ; Ren, Minsi ; Yinjun Jia ; Lu, Minsi ; Liu, Jingjing ; Ma, Weiying ; Lan, Yanyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28756431213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affinity</topic><topic>Data augmentation</topic><topic>Docking</topic><topic>Machine learning</topic><topic>Proteins</topic><topic>Representations</topic><topic>Screening</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Bowen, Gao</creatorcontrib><creatorcontrib>Qiang, Bo</creatorcontrib><creatorcontrib>Tan, Haichuan</creatorcontrib><creatorcontrib>Ren, Minsi</creatorcontrib><creatorcontrib>Yinjun Jia</creatorcontrib><creatorcontrib>Lu, Minsi</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Ma, Weiying</creatorcontrib><creatorcontrib>Lan, Yanyan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowen, Gao</au><au>Qiang, Bo</au><au>Tan, Haichuan</au><au>Ren, Minsi</au><au>Yinjun Jia</au><au>Lu, Minsi</au><au>Liu, Jingjing</au><au>Ma, Weiying</au><au>Lan, Yanyan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening</atitle><jtitle>arXiv.org</jtitle><date>2023-10-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2875643121
source Free E- Journals
subjects Affinity
Data augmentation
Docking
Machine learning
Proteins
Representations
Screening
Supervised learning
title DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DrugCLIP:%20Contrastive%20Protein-Molecule%20Representation%20Learning%20for%20Virtual%20Screening&rft.jtitle=arXiv.org&rft.au=Bowen,%20Gao&rft.date=2023-10-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2875643121%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875643121&rft_id=info:pmid/&rfr_iscdi=true