DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening
Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applicat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bowen, Gao Qiang, Bo Tan, Haichuan Ren, Minsi Yinjun Jia Lu, Minsi Liu, Jingjing Ma, Weiying Lan, Yanyan |
description | Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2875643121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875643121</sourcerecordid><originalsourceid>FETCH-proquest_journals_28756431213</originalsourceid><addsrcrecordid>eNqNit0KgjAYQEcQJOU7DLoWdPOPbq0oMJCUbmXIp0zGZt-2nr-CHqCrA-ecFQkY50lUpoxtSGjtHMcxywuWZTwg3RH9VNXX5kArox0K6-QLaIPGgdTRzSgYvAJ6hwXBgnbCSaNpDQK11BMdDdKHROeFou2AAF-7I-tRKAvhj1uyP5-66hItaJ4erOtn41F_Us_KIstTnrCE_3e9AYRdQKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875643121</pqid></control><display><type>article</type><title>DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening</title><source>Free E- Journals</source><creator>Bowen, Gao ; Qiang, Bo ; Tan, Haichuan ; Ren, Minsi ; Yinjun Jia ; Lu, Minsi ; Liu, Jingjing ; Ma, Weiying ; Lan, Yanyan</creator><creatorcontrib>Bowen, Gao ; Qiang, Bo ; Tan, Haichuan ; Ren, Minsi ; Yinjun Jia ; Lu, Minsi ; Liu, Jingjing ; Ma, Weiying ; Lan, Yanyan</creatorcontrib><description>Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Affinity ; Data augmentation ; Docking ; Machine learning ; Proteins ; Representations ; Screening ; Supervised learning</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bowen, Gao</creatorcontrib><creatorcontrib>Qiang, Bo</creatorcontrib><creatorcontrib>Tan, Haichuan</creatorcontrib><creatorcontrib>Ren, Minsi</creatorcontrib><creatorcontrib>Yinjun Jia</creatorcontrib><creatorcontrib>Lu, Minsi</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Ma, Weiying</creatorcontrib><creatorcontrib>Lan, Yanyan</creatorcontrib><title>DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening</title><title>arXiv.org</title><description>Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting.</description><subject>Affinity</subject><subject>Data augmentation</subject><subject>Docking</subject><subject>Machine learning</subject><subject>Proteins</subject><subject>Representations</subject><subject>Screening</subject><subject>Supervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNit0KgjAYQEcQJOU7DLoWdPOPbq0oMJCUbmXIp0zGZt-2nr-CHqCrA-ecFQkY50lUpoxtSGjtHMcxywuWZTwg3RH9VNXX5kArox0K6-QLaIPGgdTRzSgYvAJ6hwXBgnbCSaNpDQK11BMdDdKHROeFou2AAF-7I-tRKAvhj1uyP5-66hItaJ4erOtn41F_Us_KIstTnrCE_3e9AYRdQKA</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Bowen, Gao</creator><creator>Qiang, Bo</creator><creator>Tan, Haichuan</creator><creator>Ren, Minsi</creator><creator>Yinjun Jia</creator><creator>Lu, Minsi</creator><creator>Liu, Jingjing</creator><creator>Ma, Weiying</creator><creator>Lan, Yanyan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231010</creationdate><title>DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening</title><author>Bowen, Gao ; Qiang, Bo ; Tan, Haichuan ; Ren, Minsi ; Yinjun Jia ; Lu, Minsi ; Liu, Jingjing ; Ma, Weiying ; Lan, Yanyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28756431213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affinity</topic><topic>Data augmentation</topic><topic>Docking</topic><topic>Machine learning</topic><topic>Proteins</topic><topic>Representations</topic><topic>Screening</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Bowen, Gao</creatorcontrib><creatorcontrib>Qiang, Bo</creatorcontrib><creatorcontrib>Tan, Haichuan</creatorcontrib><creatorcontrib>Ren, Minsi</creatorcontrib><creatorcontrib>Yinjun Jia</creatorcontrib><creatorcontrib>Lu, Minsi</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Ma, Weiying</creatorcontrib><creatorcontrib>Lan, Yanyan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowen, Gao</au><au>Qiang, Bo</au><au>Tan, Haichuan</au><au>Ren, Minsi</au><au>Yinjun Jia</au><au>Lu, Minsi</au><au>Liu, Jingjing</au><au>Ma, Weiying</au><au>Lan, Yanyan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening</atitle><jtitle>arXiv.org</jtitle><date>2023-10-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2875643121 |
source | Free E- Journals |
subjects | Affinity Data augmentation Docking Machine learning Proteins Representations Screening Supervised learning |
title | DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DrugCLIP:%20Contrastive%20Protein-Molecule%20Representation%20Learning%20for%20Virtual%20Screening&rft.jtitle=arXiv.org&rft.au=Bowen,%20Gao&rft.date=2023-10-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2875643121%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875643121&rft_id=info:pmid/&rfr_iscdi=true |