Crust Macrofracturing as the Evidence of the Last Deglaciation

Machine learning methods were applied to reconsider the results of several passive seismic experiments in Finland. We created datasets from different stages of the receiver function technique and processed them with one of the basic machine learning algorithms. All the results were obtained uniforml...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2023-09, Vol.180 (9), p.3289-3301
Hauptverfasser: Aleshin, Igor, Kholodkov, Kirill, Kozlovskaya, Elena, Malygin, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3301
container_issue 9
container_start_page 3289
container_title Pure and applied geophysics
container_volume 180
creator Aleshin, Igor
Kholodkov, Kirill
Kozlovskaya, Elena
Malygin, Ivan
description Machine learning methods were applied to reconsider the results of several passive seismic experiments in Finland. We created datasets from different stages of the receiver function technique and processed them with one of the basic machine learning algorithms. All the results were obtained uniformly with the k-nearest neighbors algorithm. The first result is the Moho depth map of the region. Another result is the delineation of the near-surface low S -wave velocity layer. There are three such areas in the Northern, Southern, and Central parts of the region. The low S -wave velocity in the Northern and Southern areas can be linked to the geological structure. However, we attribute the central low S -wave velocity area to a large number of water-saturated cracks in the upper 1–5 km of the crust. Analysis of the structure of this area leads us to the conclusion that macrofracturing was caused by the last deglaciation.
doi_str_mv 10.1007/s00024-023-03334-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2875632991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875632991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-63882c66020c1dafe94d2b6ee1aff15bed3266e6dc6c77b2f41e63b791616c4d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouFa_gKeC5-jkT5PtRZC6q8KKFz2HNJ2sXdZ2TVrBb292K3jzNMzw3hvej5BLBtcMQN9EAOCSAhcUhBCS6iMyY5IDLZlQx2QG6UxlUYhTchbjBoBpXZQzcluFMQ75s3Wh98G6YQxtt85tzId3zBdfbYOdw7z3h31lk_Ye11vrWju0fXdOTrzdRrz4nRl5Wy5eq0e6enl4qu5W1PJSDFSJ-Zw7pYCDY431WMqG1wqRWe9ZUWMjuFKoGqec1jX3kqEStS6ZYsrJRmTkasrdhf5zxDiYTT-GLr00fK4LJXiZimaET6pUJsaA3uxC-2HDt2Fg9pzMxMkkTubAyehkEpMp7vbVMfxF_-P6AW7Lafc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875632991</pqid></control><display><type>article</type><title>Crust Macrofracturing as the Evidence of the Last Deglaciation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aleshin, Igor ; Kholodkov, Kirill ; Kozlovskaya, Elena ; Malygin, Ivan</creator><creatorcontrib>Aleshin, Igor ; Kholodkov, Kirill ; Kozlovskaya, Elena ; Malygin, Ivan</creatorcontrib><description>Machine learning methods were applied to reconsider the results of several passive seismic experiments in Finland. We created datasets from different stages of the receiver function technique and processed them with one of the basic machine learning algorithms. All the results were obtained uniformly with the k-nearest neighbors algorithm. The first result is the Moho depth map of the region. Another result is the delineation of the near-surface low S -wave velocity layer. There are three such areas in the Northern, Southern, and Central parts of the region. The low S -wave velocity in the Northern and Southern areas can be linked to the geological structure. However, we attribute the central low S -wave velocity area to a large number of water-saturated cracks in the upper 1–5 km of the crust. Analysis of the structure of this area leads us to the conclusion that macrofracturing was caused by the last deglaciation.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-023-03334-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Datasets ; Deglaciation ; Earth and Environmental Science ; Earth Sciences ; Experiments ; Geological structures ; Geophysics/Geodesy ; Learning algorithms ; Machine learning ; Meltwater ; Moho ; S waves ; Seismic velocities ; Velocity ; Wave velocity</subject><ispartof>Pure and applied geophysics, 2023-09, Vol.180 (9), p.3289-3301</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-63882c66020c1dafe94d2b6ee1aff15bed3266e6dc6c77b2f41e63b791616c4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-023-03334-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-023-03334-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Aleshin, Igor</creatorcontrib><creatorcontrib>Kholodkov, Kirill</creatorcontrib><creatorcontrib>Kozlovskaya, Elena</creatorcontrib><creatorcontrib>Malygin, Ivan</creatorcontrib><title>Crust Macrofracturing as the Evidence of the Last Deglaciation</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>Machine learning methods were applied to reconsider the results of several passive seismic experiments in Finland. We created datasets from different stages of the receiver function technique and processed them with one of the basic machine learning algorithms. All the results were obtained uniformly with the k-nearest neighbors algorithm. The first result is the Moho depth map of the region. Another result is the delineation of the near-surface low S -wave velocity layer. There are three such areas in the Northern, Southern, and Central parts of the region. The low S -wave velocity in the Northern and Southern areas can be linked to the geological structure. However, we attribute the central low S -wave velocity area to a large number of water-saturated cracks in the upper 1–5 km of the crust. Analysis of the structure of this area leads us to the conclusion that macrofracturing was caused by the last deglaciation.</description><subject>Algorithms</subject><subject>Datasets</subject><subject>Deglaciation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Experiments</subject><subject>Geological structures</subject><subject>Geophysics/Geodesy</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Meltwater</subject><subject>Moho</subject><subject>S waves</subject><subject>Seismic velocities</subject><subject>Velocity</subject><subject>Wave velocity</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouFa_gKeC5-jkT5PtRZC6q8KKFz2HNJ2sXdZ2TVrBb292K3jzNMzw3hvej5BLBtcMQN9EAOCSAhcUhBCS6iMyY5IDLZlQx2QG6UxlUYhTchbjBoBpXZQzcluFMQ75s3Wh98G6YQxtt85tzId3zBdfbYOdw7z3h31lk_Ye11vrWju0fXdOTrzdRrz4nRl5Wy5eq0e6enl4qu5W1PJSDFSJ-Zw7pYCDY431WMqG1wqRWe9ZUWMjuFKoGqec1jX3kqEStS6ZYsrJRmTkasrdhf5zxDiYTT-GLr00fK4LJXiZimaET6pUJsaA3uxC-2HDt2Fg9pzMxMkkTubAyehkEpMp7vbVMfxF_-P6AW7Lafc</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Aleshin, Igor</creator><creator>Kholodkov, Kirill</creator><creator>Kozlovskaya, Elena</creator><creator>Malygin, Ivan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20230901</creationdate><title>Crust Macrofracturing as the Evidence of the Last Deglaciation</title><author>Aleshin, Igor ; Kholodkov, Kirill ; Kozlovskaya, Elena ; Malygin, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-63882c66020c1dafe94d2b6ee1aff15bed3266e6dc6c77b2f41e63b791616c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Datasets</topic><topic>Deglaciation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Experiments</topic><topic>Geological structures</topic><topic>Geophysics/Geodesy</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Meltwater</topic><topic>Moho</topic><topic>S waves</topic><topic>Seismic velocities</topic><topic>Velocity</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aleshin, Igor</creatorcontrib><creatorcontrib>Kholodkov, Kirill</creatorcontrib><creatorcontrib>Kozlovskaya, Elena</creatorcontrib><creatorcontrib>Malygin, Ivan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aleshin, Igor</au><au>Kholodkov, Kirill</au><au>Kozlovskaya, Elena</au><au>Malygin, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crust Macrofracturing as the Evidence of the Last Deglaciation</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>180</volume><issue>9</issue><spage>3289</spage><epage>3301</epage><pages>3289-3301</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>Machine learning methods were applied to reconsider the results of several passive seismic experiments in Finland. We created datasets from different stages of the receiver function technique and processed them with one of the basic machine learning algorithms. All the results were obtained uniformly with the k-nearest neighbors algorithm. The first result is the Moho depth map of the region. Another result is the delineation of the near-surface low S -wave velocity layer. There are three such areas in the Northern, Southern, and Central parts of the region. The low S -wave velocity in the Northern and Southern areas can be linked to the geological structure. However, we attribute the central low S -wave velocity area to a large number of water-saturated cracks in the upper 1–5 km of the crust. Analysis of the structure of this area leads us to the conclusion that macrofracturing was caused by the last deglaciation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-023-03334-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-4553
ispartof Pure and applied geophysics, 2023-09, Vol.180 (9), p.3289-3301
issn 0033-4553
1420-9136
language eng
recordid cdi_proquest_journals_2875632991
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Datasets
Deglaciation
Earth and Environmental Science
Earth Sciences
Experiments
Geological structures
Geophysics/Geodesy
Learning algorithms
Machine learning
Meltwater
Moho
S waves
Seismic velocities
Velocity
Wave velocity
title Crust Macrofracturing as the Evidence of the Last Deglaciation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crust%20Macrofracturing%20as%20the%20Evidence%20of%20the%20Last%20Deglaciation&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Aleshin,%20Igor&rft.date=2023-09-01&rft.volume=180&rft.issue=9&rft.spage=3289&rft.epage=3301&rft.pages=3289-3301&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-023-03334-7&rft_dat=%3Cproquest_cross%3E2875632991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875632991&rft_id=info:pmid/&rfr_iscdi=true