Crust Macrofracturing as the Evidence of the Last Deglaciation
Machine learning methods were applied to reconsider the results of several passive seismic experiments in Finland. We created datasets from different stages of the receiver function technique and processed them with one of the basic machine learning algorithms. All the results were obtained uniforml...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2023-09, Vol.180 (9), p.3289-3301 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machine learning methods were applied to reconsider the results of several passive seismic experiments in Finland. We created datasets from different stages of the receiver function technique and processed them with one of the basic machine learning algorithms. All the results were obtained uniformly with the k-nearest neighbors algorithm. The first result is the Moho depth map of the region. Another result is the delineation of the near-surface low
S
-wave velocity layer. There are three such areas in the Northern, Southern, and Central parts of the region. The low
S
-wave velocity in the Northern and Southern areas can be linked to the geological structure. However, we attribute the central low
S
-wave velocity area to a large number of water-saturated cracks in the upper 1–5 km of the crust. Analysis of the structure of this area leads us to the conclusion that macrofracturing was caused by the last deglaciation. |
---|---|
ISSN: | 0033-4553 1420-9136 |
DOI: | 10.1007/s00024-023-03334-7 |