On the structure of lower bounded HNN extensions

This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if $S^* = [ S;\; U_1,U_2;\; \phi ]$ is a lower bounded HNN extension then the maximal subgroups of $S^*$ may be described using Bass-Serre th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2023-09, Vol.65 (3), p.697-715
Hauptverfasser: Bennett, Paul, Jajcayová, Tatiana B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 715
container_issue 3
container_start_page 697
container_title Glasgow mathematical journal
container_volume 65
creator Bennett, Paul
Jajcayová, Tatiana B.
description This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if $S^* = [ S;\; U_1,U_2;\; \phi ]$ is a lower bounded HNN extension then the maximal subgroups of $S^*$ may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the $\mathcal{D}$ -classes of $S$ , $U_1$ and $U_2$ . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite $\mathcal{R}$ -classes, residual finiteness, being $E$ -unitary, and $0$ - $E$ -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.
doi_str_mv 10.1017/S001708952300023X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2875632148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S001708952300023X</cupid><sourcerecordid>2875632148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-b439b409a8dd23c3df699726a1ad5ece0f37e73b9cc2a1f869527fdb8174bfd33</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq0lmd7M5SlErlPagQm9LPiba0m5qsov6702p4EG8zPB4HzM8Qi45u-aMy5snlidrVCWAMSZgeURGvKxVUTG1PCajPV3s-VNyltI6Q8hoRNiio_0b0tTHwfZDRBo83YQPjNSEoXPo6HQ-p_jZY5dWoUvn5MTrTcKLnz0mL_d3z5NpMVs8PE5uZ4UFLvrClKBMyZRunBNgwflaKSlqzbWr0CLzIFGCUdYKzX1T58-ld6bhsjTeAYzJ1SF3F8P7gKlv12GIXT7ZikZWNQheNlnFDyobQ0oRfbuLq62OXy1n7b6Y9k8x2QM_Hr01ceVe8Tf6f9c3as9kFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875632148</pqid></control><display><type>article</type><title>On the structure of lower bounded HNN extensions</title><source>Cambridge Journals - CAUL Collection</source><creator>Bennett, Paul ; Jajcayová, Tatiana B.</creator><creatorcontrib>Bennett, Paul ; Jajcayová, Tatiana B.</creatorcontrib><description>This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if $S^* = [ S;\; U_1,U_2;\; \phi ]$ is a lower bounded HNN extension then the maximal subgroups of $S^*$ may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the $\mathcal{D}$ -classes of $S$ , $U_1$ and $U_2$ . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite $\mathcal{R}$ -classes, residual finiteness, being $E$ -unitary, and $0$ - $E$ -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S001708952300023X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Monoids ; Semigroups ; Subgroups</subject><ispartof>Glasgow mathematical journal, 2023-09, Vol.65 (3), p.697-715</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-b439b409a8dd23c3df699726a1ad5ece0f37e73b9cc2a1f869527fdb8174bfd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S001708952300023X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Bennett, Paul</creatorcontrib><creatorcontrib>Jajcayová, Tatiana B.</creatorcontrib><title>On the structure of lower bounded HNN extensions</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if $S^* = [ S;\; U_1,U_2;\; \phi ]$ is a lower bounded HNN extension then the maximal subgroups of $S^*$ may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the $\mathcal{D}$ -classes of $S$ , $U_1$ and $U_2$ . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite $\mathcal{R}$ -classes, residual finiteness, being $E$ -unitary, and $0$ - $E$ -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.</description><subject>Monoids</subject><subject>Semigroups</subject><subject>Subgroups</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq0lmd7M5SlErlPagQm9LPiba0m5qsov6702p4EG8zPB4HzM8Qi45u-aMy5snlidrVCWAMSZgeURGvKxVUTG1PCajPV3s-VNyltI6Q8hoRNiio_0b0tTHwfZDRBo83YQPjNSEoXPo6HQ-p_jZY5dWoUvn5MTrTcKLnz0mL_d3z5NpMVs8PE5uZ4UFLvrClKBMyZRunBNgwflaKSlqzbWr0CLzIFGCUdYKzX1T58-ld6bhsjTeAYzJ1SF3F8P7gKlv12GIXT7ZikZWNQheNlnFDyobQ0oRfbuLq62OXy1n7b6Y9k8x2QM_Hr01ceVe8Tf6f9c3as9kFg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Bennett, Paul</creator><creator>Jajcayová, Tatiana B.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230901</creationdate><title>On the structure of lower bounded HNN extensions</title><author>Bennett, Paul ; Jajcayová, Tatiana B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-b439b409a8dd23c3df699726a1ad5ece0f37e73b9cc2a1f869527fdb8174bfd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Monoids</topic><topic>Semigroups</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennett, Paul</creatorcontrib><creatorcontrib>Jajcayová, Tatiana B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennett, Paul</au><au>Jajcayová, Tatiana B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the structure of lower bounded HNN extensions</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>65</volume><issue>3</issue><spage>697</spage><epage>715</epage><pages>697-715</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if $S^* = [ S;\; U_1,U_2;\; \phi ]$ is a lower bounded HNN extension then the maximal subgroups of $S^*$ may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the $\mathcal{D}$ -classes of $S$ , $U_1$ and $U_2$ . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite $\mathcal{R}$ -classes, residual finiteness, being $E$ -unitary, and $0$ - $E$ -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S001708952300023X</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2023-09, Vol.65 (3), p.697-715
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_journals_2875632148
source Cambridge Journals - CAUL Collection
subjects Monoids
Semigroups
Subgroups
title On the structure of lower bounded HNN extensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20structure%20of%20lower%20bounded%20HNN%20extensions&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=Bennett,%20Paul&rft.date=2023-09-01&rft.volume=65&rft.issue=3&rft.spage=697&rft.epage=715&rft.pages=697-715&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S001708952300023X&rft_dat=%3Cproquest_cross%3E2875632148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875632148&rft_id=info:pmid/&rft_cupid=10_1017_S001708952300023X&rfr_iscdi=true