On the structure of lower bounded HNN extensions
This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if $S^* = [ S;\; U_1,U_2;\; \phi ]$ is a lower bounded HNN extension then the maximal subgroups of $S^*$ may be described using Bass-Serre th...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2023-09, Vol.65 (3), p.697-715 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 715 |
---|---|
container_issue | 3 |
container_start_page | 697 |
container_title | Glasgow mathematical journal |
container_volume | 65 |
creator | Bennett, Paul Jajcayová, Tatiana B. |
description | This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if
$S^* = [ S;\; U_1,U_2;\; \phi ]$
is a lower bounded HNN extension then the maximal subgroups of
$S^*$
may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the
$\mathcal{D}$
-classes of
$S$
,
$U_1$
and
$U_2$
. We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite
$\mathcal{R}$
-classes, residual finiteness, being
$E$
-unitary, and
$0$
-
$E$
-unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid. |
doi_str_mv | 10.1017/S001708952300023X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2875632148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S001708952300023X</cupid><sourcerecordid>2875632148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-b439b409a8dd23c3df699726a1ad5ece0f37e73b9cc2a1f869527fdb8174bfd33</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq0lmd7M5SlErlPagQm9LPiba0m5qsov6702p4EG8zPB4HzM8Qi45u-aMy5snlidrVCWAMSZgeURGvKxVUTG1PCajPV3s-VNyltI6Q8hoRNiio_0b0tTHwfZDRBo83YQPjNSEoXPo6HQ-p_jZY5dWoUvn5MTrTcKLnz0mL_d3z5NpMVs8PE5uZ4UFLvrClKBMyZRunBNgwflaKSlqzbWr0CLzIFGCUdYKzX1T58-ld6bhsjTeAYzJ1SF3F8P7gKlv12GIXT7ZikZWNQheNlnFDyobQ0oRfbuLq62OXy1n7b6Y9k8x2QM_Hr01ceVe8Tf6f9c3as9kFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875632148</pqid></control><display><type>article</type><title>On the structure of lower bounded HNN extensions</title><source>Cambridge Journals - CAUL Collection</source><creator>Bennett, Paul ; Jajcayová, Tatiana B.</creator><creatorcontrib>Bennett, Paul ; Jajcayová, Tatiana B.</creatorcontrib><description>This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if
$S^* = [ S;\; U_1,U_2;\; \phi ]$
is a lower bounded HNN extension then the maximal subgroups of
$S^*$
may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the
$\mathcal{D}$
-classes of
$S$
,
$U_1$
and
$U_2$
. We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite
$\mathcal{R}$
-classes, residual finiteness, being
$E$
-unitary, and
$0$
-
$E$
-unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S001708952300023X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Monoids ; Semigroups ; Subgroups</subject><ispartof>Glasgow mathematical journal, 2023-09, Vol.65 (3), p.697-715</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-b439b409a8dd23c3df699726a1ad5ece0f37e73b9cc2a1f869527fdb8174bfd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S001708952300023X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Bennett, Paul</creatorcontrib><creatorcontrib>Jajcayová, Tatiana B.</creatorcontrib><title>On the structure of lower bounded HNN extensions</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if
$S^* = [ S;\; U_1,U_2;\; \phi ]$
is a lower bounded HNN extension then the maximal subgroups of
$S^*$
may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the
$\mathcal{D}$
-classes of
$S$
,
$U_1$
and
$U_2$
. We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite
$\mathcal{R}$
-classes, residual finiteness, being
$E$
-unitary, and
$0$
-
$E$
-unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.</description><subject>Monoids</subject><subject>Semigroups</subject><subject>Subgroups</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq0lmd7M5SlErlPagQm9LPiba0m5qsov6702p4EG8zPB4HzM8Qi45u-aMy5snlidrVCWAMSZgeURGvKxVUTG1PCajPV3s-VNyltI6Q8hoRNiio_0b0tTHwfZDRBo83YQPjNSEoXPo6HQ-p_jZY5dWoUvn5MTrTcKLnz0mL_d3z5NpMVs8PE5uZ4UFLvrClKBMyZRunBNgwflaKSlqzbWr0CLzIFGCUdYKzX1T58-ld6bhsjTeAYzJ1SF3F8P7gKlv12GIXT7ZikZWNQheNlnFDyobQ0oRfbuLq62OXy1n7b6Y9k8x2QM_Hr01ceVe8Tf6f9c3as9kFg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Bennett, Paul</creator><creator>Jajcayová, Tatiana B.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230901</creationdate><title>On the structure of lower bounded HNN extensions</title><author>Bennett, Paul ; Jajcayová, Tatiana B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-b439b409a8dd23c3df699726a1ad5ece0f37e73b9cc2a1f869527fdb8174bfd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Monoids</topic><topic>Semigroups</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennett, Paul</creatorcontrib><creatorcontrib>Jajcayová, Tatiana B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennett, Paul</au><au>Jajcayová, Tatiana B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the structure of lower bounded HNN extensions</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>65</volume><issue>3</issue><spage>697</spage><epage>715</epage><pages>697-715</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if
$S^* = [ S;\; U_1,U_2;\; \phi ]$
is a lower bounded HNN extension then the maximal subgroups of
$S^*$
may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the
$\mathcal{D}$
-classes of
$S$
,
$U_1$
and
$U_2$
. We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite
$\mathcal{R}$
-classes, residual finiteness, being
$E$
-unitary, and
$0$
-
$E$
-unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S001708952300023X</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-0895 |
ispartof | Glasgow mathematical journal, 2023-09, Vol.65 (3), p.697-715 |
issn | 0017-0895 1469-509X |
language | eng |
recordid | cdi_proquest_journals_2875632148 |
source | Cambridge Journals - CAUL Collection |
subjects | Monoids Semigroups Subgroups |
title | On the structure of lower bounded HNN extensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20structure%20of%20lower%20bounded%20HNN%20extensions&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=Bennett,%20Paul&rft.date=2023-09-01&rft.volume=65&rft.issue=3&rft.spage=697&rft.epage=715&rft.pages=697-715&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S001708952300023X&rft_dat=%3Cproquest_cross%3E2875632148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875632148&rft_id=info:pmid/&rft_cupid=10_1017_S001708952300023X&rfr_iscdi=true |