Reducing the Control Overhead of Intelligent Reconfigurable Surfaces Via a Tensor-Based Low-Rank Factorization Approach
Intelligent reconfigurable surfaces (IRS) are becoming an attractive component of cellular networks due to their ability to shape the propagation environment and thereby improve coverage. While IRS nodes incorporate a great number of phase-shifting elements and a controller entity, the phase shifts...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2023-10, Vol.22 (10), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE transactions on wireless communications |
container_volume | 22 |
creator | Sokal, Bruno Gomes, Paulo R. B. De Almeida, Andre L. F. Makki, Behrooz Fodor, Gabor |
description | Intelligent reconfigurable surfaces (IRS) are becoming an attractive component of cellular networks due to their ability to shape the propagation environment and thereby improve coverage. While IRS nodes incorporate a great number of phase-shifting elements and a controller entity, the phase shifts are typically determined by the cellular base station (BS) due to its computational capability. Since controlling a large number of phase shifts may become prohibitive in practice, it is important to reduce the control overhead between the BS and the IRS controller. To this end, in this paper, we propose a low-rank modeling approach for the IRS phase shifts. The key idea is to represent the IRS phase shift vector using a low-rank tensor approximation model, where each rank-one component is modeled as the Kronecker product of a predefined number of factors of smaller sizes, obtained via tensor decomposition algorithms. We show that the proposed low-rank models drastically reduce the required feedback requirements associated with the BS-IRS control links. Our simulation results indicate that the proposed method is especially attractive in scenarios with a strong line of sight component, in which case nearly the same spectral efficiency is reached as in the cases with near-optimal phase shifts, but with significantly lower feedback overhead. |
doi_str_mv | 10.1109/TWC.2023.3244487 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2875572325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10054591</ieee_id><sourcerecordid>2875572325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-90e175974f3757a20b08109a555ca16f04bb7c2beb7cd31750446f01717dd9e53</originalsourceid><addsrcrecordid>eNpNkc1rGzEQxZfQQNI09x56EPS8jj5Xu0fXjVuDIeA46VFotbO27K3kStqa5K-vjEPoZWYYfvN4wyuKzwRPCMHN3frXbEIxZRNGOee1vCiuiRB1SSmvP5xmVpWEyuqq-BjjDmMiKyGui-MKutFYt0FpC2jmXQp-QA9_IWxBd8j3aOESDIPdgEtoBca73m7GoNsB0OMYem0gomerkUZrcNGH8puO0KGlP5Yr7fZork3ywb7qZL1D08MheG22n4rLXg8Rbt_6TfE0v1_PfpbLhx-L2XRZGsZwKhsMRIpG8p5JITXFLa7zt1oIYTSpeszbVhraQq4dyyjmPG-JJLLrGhDspijPuvEIh7FVh2B_6_CivLbqu32eKh82ap-2inEiKpL5r2c-2_wzQkxq58fgskVFaymEpIyeVPGZMsHHGKB_1yVYneJQOQ51ikO9xZFPvpxPLAD8h2PBRUPYP6_vhoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875572325</pqid></control><display><type>article</type><title>Reducing the Control Overhead of Intelligent Reconfigurable Surfaces Via a Tensor-Based Low-Rank Factorization Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Sokal, Bruno ; Gomes, Paulo R. B. ; De Almeida, Andre L. F. ; Makki, Behrooz ; Fodor, Gabor</creator><creatorcontrib>Sokal, Bruno ; Gomes, Paulo R. B. ; De Almeida, Andre L. F. ; Makki, Behrooz ; Fodor, Gabor</creatorcontrib><description>Intelligent reconfigurable surfaces (IRS) are becoming an attractive component of cellular networks due to their ability to shape the propagation environment and thereby improve coverage. While IRS nodes incorporate a great number of phase-shifting elements and a controller entity, the phase shifts are typically determined by the cellular base station (BS) due to its computational capability. Since controlling a large number of phase shifts may become prohibitive in practice, it is important to reduce the control overhead between the BS and the IRS controller. To this end, in this paper, we propose a low-rank modeling approach for the IRS phase shifts. The key idea is to represent the IRS phase shift vector using a low-rank tensor approximation model, where each rank-one component is modeled as the Kronecker product of a predefined number of factors of smaller sizes, obtained via tensor decomposition algorithms. We show that the proposed low-rank models drastically reduce the required feedback requirements associated with the BS-IRS control links. Our simulation results indicate that the proposed method is especially attractive in scenarios with a strong line of sight component, in which case nearly the same spectral efficiency is reached as in the cases with near-optimal phase shifts, but with significantly lower feedback overhead.</description><identifier>ISSN: 1536-1276</identifier><identifier>ISSN: 1558-2248</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3244487</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cellular communication ; Channel estimation ; control signaling ; Controllers ; Feedback ; Feedback control ; feedback overhead ; low-rank approximation ; Mathematical analysis ; MIMO communication ; PARAFAC ; Process control ; Reconfigurable intelligent surface ; Reconfigurable intelligent surfaces ; Simulation ; tensor modeling ; Tensors ; Tucker ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2023-10, Vol.22 (10), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-90e175974f3757a20b08109a555ca16f04bb7c2beb7cd31750446f01717dd9e53</citedby><cites>FETCH-LOGICAL-c330t-90e175974f3757a20b08109a555ca16f04bb7c2beb7cd31750446f01717dd9e53</cites><orcidid>0000-0003-0320-8301 ; 0000-0003-0809-4833 ; 0000-0002-3149-6307 ; 0000-0001-7863-997X ; 0000-0002-2289-3159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10054591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10054591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-341561$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sokal, Bruno</creatorcontrib><creatorcontrib>Gomes, Paulo R. B.</creatorcontrib><creatorcontrib>De Almeida, Andre L. F.</creatorcontrib><creatorcontrib>Makki, Behrooz</creatorcontrib><creatorcontrib>Fodor, Gabor</creatorcontrib><title>Reducing the Control Overhead of Intelligent Reconfigurable Surfaces Via a Tensor-Based Low-Rank Factorization Approach</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Intelligent reconfigurable surfaces (IRS) are becoming an attractive component of cellular networks due to their ability to shape the propagation environment and thereby improve coverage. While IRS nodes incorporate a great number of phase-shifting elements and a controller entity, the phase shifts are typically determined by the cellular base station (BS) due to its computational capability. Since controlling a large number of phase shifts may become prohibitive in practice, it is important to reduce the control overhead between the BS and the IRS controller. To this end, in this paper, we propose a low-rank modeling approach for the IRS phase shifts. The key idea is to represent the IRS phase shift vector using a low-rank tensor approximation model, where each rank-one component is modeled as the Kronecker product of a predefined number of factors of smaller sizes, obtained via tensor decomposition algorithms. We show that the proposed low-rank models drastically reduce the required feedback requirements associated with the BS-IRS control links. Our simulation results indicate that the proposed method is especially attractive in scenarios with a strong line of sight component, in which case nearly the same spectral efficiency is reached as in the cases with near-optimal phase shifts, but with significantly lower feedback overhead.</description><subject>Algorithms</subject><subject>Cellular communication</subject><subject>Channel estimation</subject><subject>control signaling</subject><subject>Controllers</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>feedback overhead</subject><subject>low-rank approximation</subject><subject>Mathematical analysis</subject><subject>MIMO communication</subject><subject>PARAFAC</subject><subject>Process control</subject><subject>Reconfigurable intelligent surface</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Simulation</subject><subject>tensor modeling</subject><subject>Tensors</subject><subject>Tucker</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkc1rGzEQxZfQQNI09x56EPS8jj5Xu0fXjVuDIeA46VFotbO27K3kStqa5K-vjEPoZWYYfvN4wyuKzwRPCMHN3frXbEIxZRNGOee1vCiuiRB1SSmvP5xmVpWEyuqq-BjjDmMiKyGui-MKutFYt0FpC2jmXQp-QA9_IWxBd8j3aOESDIPdgEtoBca73m7GoNsB0OMYem0gomerkUZrcNGH8puO0KGlP5Yr7fZork3ywb7qZL1D08MheG22n4rLXg8Rbt_6TfE0v1_PfpbLhx-L2XRZGsZwKhsMRIpG8p5JITXFLa7zt1oIYTSpeszbVhraQq4dyyjmPG-JJLLrGhDspijPuvEIh7FVh2B_6_CivLbqu32eKh82ap-2inEiKpL5r2c-2_wzQkxq58fgskVFaymEpIyeVPGZMsHHGKB_1yVYneJQOQ51ikO9xZFPvpxPLAD8h2PBRUPYP6_vhoQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Sokal, Bruno</creator><creator>Gomes, Paulo R. B.</creator><creator>De Almeida, Andre L. F.</creator><creator>Makki, Behrooz</creator><creator>Fodor, Gabor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0003-0320-8301</orcidid><orcidid>https://orcid.org/0000-0003-0809-4833</orcidid><orcidid>https://orcid.org/0000-0002-3149-6307</orcidid><orcidid>https://orcid.org/0000-0001-7863-997X</orcidid><orcidid>https://orcid.org/0000-0002-2289-3159</orcidid></search><sort><creationdate>20231001</creationdate><title>Reducing the Control Overhead of Intelligent Reconfigurable Surfaces Via a Tensor-Based Low-Rank Factorization Approach</title><author>Sokal, Bruno ; Gomes, Paulo R. B. ; De Almeida, Andre L. F. ; Makki, Behrooz ; Fodor, Gabor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-90e175974f3757a20b08109a555ca16f04bb7c2beb7cd31750446f01717dd9e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cellular communication</topic><topic>Channel estimation</topic><topic>control signaling</topic><topic>Controllers</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>feedback overhead</topic><topic>low-rank approximation</topic><topic>Mathematical analysis</topic><topic>MIMO communication</topic><topic>PARAFAC</topic><topic>Process control</topic><topic>Reconfigurable intelligent surface</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Simulation</topic><topic>tensor modeling</topic><topic>Tensors</topic><topic>Tucker</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokal, Bruno</creatorcontrib><creatorcontrib>Gomes, Paulo R. B.</creatorcontrib><creatorcontrib>De Almeida, Andre L. F.</creatorcontrib><creatorcontrib>Makki, Behrooz</creatorcontrib><creatorcontrib>Fodor, Gabor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sokal, Bruno</au><au>Gomes, Paulo R. B.</au><au>De Almeida, Andre L. F.</au><au>Makki, Behrooz</au><au>Fodor, Gabor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the Control Overhead of Intelligent Reconfigurable Surfaces Via a Tensor-Based Low-Rank Factorization Approach</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>22</volume><issue>10</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><issn>1558-2248</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Intelligent reconfigurable surfaces (IRS) are becoming an attractive component of cellular networks due to their ability to shape the propagation environment and thereby improve coverage. While IRS nodes incorporate a great number of phase-shifting elements and a controller entity, the phase shifts are typically determined by the cellular base station (BS) due to its computational capability. Since controlling a large number of phase shifts may become prohibitive in practice, it is important to reduce the control overhead between the BS and the IRS controller. To this end, in this paper, we propose a low-rank modeling approach for the IRS phase shifts. The key idea is to represent the IRS phase shift vector using a low-rank tensor approximation model, where each rank-one component is modeled as the Kronecker product of a predefined number of factors of smaller sizes, obtained via tensor decomposition algorithms. We show that the proposed low-rank models drastically reduce the required feedback requirements associated with the BS-IRS control links. Our simulation results indicate that the proposed method is especially attractive in scenarios with a strong line of sight component, in which case nearly the same spectral efficiency is reached as in the cases with near-optimal phase shifts, but with significantly lower feedback overhead.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3244487</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0320-8301</orcidid><orcidid>https://orcid.org/0000-0003-0809-4833</orcidid><orcidid>https://orcid.org/0000-0002-3149-6307</orcidid><orcidid>https://orcid.org/0000-0001-7863-997X</orcidid><orcidid>https://orcid.org/0000-0002-2289-3159</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2023-10, Vol.22 (10), p.1-1 |
issn | 1536-1276 1558-2248 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_2875572325 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cellular communication Channel estimation control signaling Controllers Feedback Feedback control feedback overhead low-rank approximation Mathematical analysis MIMO communication PARAFAC Process control Reconfigurable intelligent surface Reconfigurable intelligent surfaces Simulation tensor modeling Tensors Tucker Wireless communication |
title | Reducing the Control Overhead of Intelligent Reconfigurable Surfaces Via a Tensor-Based Low-Rank Factorization Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20Control%20Overhead%20of%20Intelligent%20Reconfigurable%20Surfaces%20Via%20a%20Tensor-Based%20Low-Rank%20Factorization%20Approach&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Sokal,%20Bruno&rft.date=2023-10-01&rft.volume=22&rft.issue=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3244487&rft_dat=%3Cproquest_RIE%3E2875572325%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875572325&rft_id=info:pmid/&rft_ieee_id=10054591&rfr_iscdi=true |