User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy

Recently, releasing data to a third party for secondary analysis has become a trend of service computing. However, data owners are concerned that such a move may expose individuals' records, which is in violation of regulations such as the European Union's General Data Protection Regulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2023-09, Vol.16 (5), p.1-14
Hauptverfasser: Tai, Bo-Chen, Tsou, Yao-Tung, Li, Szu-Chuang, Huang, Yennun, Tsai, Pei-Yuan, Tsai, Yu-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 5
container_start_page 1
container_title IEEE transactions on services computing
container_volume 16
creator Tai, Bo-Chen
Tsou, Yao-Tung
Li, Szu-Chuang
Huang, Yennun
Tsai, Pei-Yuan
Tsai, Yu-Cheng
description Recently, releasing data to a third party for secondary analysis has become a trend of service computing. However, data owners are concerned that such a move may expose individuals' records, which is in violation of regulations such as the European Union's General Data Protection Regulation. Differential privacy has been proposed as a possible solution to the aforementioned problem. The privacy budget \varepsilon in differential privacy is for theoretical interpretation, but in practice, its application in measuring the risk of data disclosure has not been well studied, especially with sampling-based synthetic datasets. Moreover, datasets released by data owners with quantifiable privacy levels and the explicit utility for these datasets have yet to be well developed. In this paper, we present an intuitive approach for defining the privacy level (i.e., data hit rate and k-level) and utility level (i.e., basic statistics and a series of data mining models), and the privacy budget \varepsilon is quantified for evaluating the risk and utility of private data. In addition, we propose two user-driven synthetic dataset hunting methods to generate a synthetic dataset with the specified privacy objective, enabling the data owner (e.g., the government and financial companies) to understand the possible privacy risk and thereby release datasets with confirmed privacy level. To the best of our knowledge, this is the first method that allows data providers to automatically generate synthetic datasets with a quantifiable privacy level for the service of open data.
doi_str_mv 10.1109/TSC.2023.3287239
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2875568622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10155231</ieee_id><sourcerecordid>2875568622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-21aabece8771527b0eff942968651db55af5a7b823eb3a2fd323d59a1822276f3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQRoMoWKt3Dx4WPG9NJpvN5iitVqFQpe05ZLcTmlJ3a5Iq--9NaQ-eBob3fcM8Qu4ZHTFG1dNyMR4BBT7iUEng6oIMgEvIKdDikgyY4ipnXBbX5CaELaUlVJUakPkqoM8n3v1gmy36Nm4wuiabmGgCxmyKLXoTXddmvy5uss-DaaOzztQ7zCbOWvSYFmaXfaQK0_S35MqaXcC78xyS1evLcvyWz-bT9_HzLG-gEDEHZkyNDVZSMgGypmitKkCVVSnYuhbCWGFkXQHHmhuwaw58LZRhFQDI0vIheTz17n33fcAQ9bY7-Dad1Ol_IVIRQKLoiWp8F4JHq_fefRnfa0b1UZtO2vRRmz5rS5GHU8Qh4j-cCQGc8T-w1mkT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875568622</pqid></control><display><type>article</type><title>User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy</title><source>IEEE Electronic Library (IEL)</source><creator>Tai, Bo-Chen ; Tsou, Yao-Tung ; Li, Szu-Chuang ; Huang, Yennun ; Tsai, Pei-Yuan ; Tsai, Yu-Cheng</creator><creatorcontrib>Tai, Bo-Chen ; Tsou, Yao-Tung ; Li, Szu-Chuang ; Huang, Yennun ; Tsai, Pei-Yuan ; Tsai, Yu-Cheng</creatorcontrib><description><![CDATA[Recently, releasing data to a third party for secondary analysis has become a trend of service computing. However, data owners are concerned that such a move may expose individuals' records, which is in violation of regulations such as the European Union's General Data Protection Regulation. Differential privacy has been proposed as a possible solution to the aforementioned problem. The privacy budget <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math></inline-formula> in differential privacy is for theoretical interpretation, but in practice, its application in measuring the risk of data disclosure has not been well studied, especially with sampling-based synthetic datasets. Moreover, datasets released by data owners with quantifiable privacy levels and the explicit utility for these datasets have yet to be well developed. In this paper, we present an intuitive approach for defining the privacy level (<inline-formula><tex-math notation="LaTeX">i.e.</tex-math></inline-formula>, data hit rate and <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-level) and utility level (<inline-formula><tex-math notation="LaTeX">i.e.</tex-math></inline-formula>, basic statistics and a series of data mining models), and the privacy budget <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math></inline-formula> is quantified for evaluating the risk and utility of private data. In addition, we propose two user-driven synthetic dataset hunting methods to generate a synthetic dataset with the specified privacy objective, enabling the data owner (<inline-formula><tex-math notation="LaTeX">e.g.</tex-math></inline-formula>, the government and financial companies) to understand the possible privacy risk and thereby release datasets with confirmed privacy level. To the best of our knowledge, this is the first method that allows data providers to automatically generate synthetic datasets with a quantifiable privacy level for the service of open data.]]></description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2023.3287239</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; k&lt;/tex-math&gt; &lt;/inline-formula&gt;-level ; Budgets ; data hit rate ; Data mining ; Data models ; Data privacy ; Data protection ; Datasets ; Differential privacy ; Distributed databases ; Government ; Privacy ; Risk ; Synthetic data ; synthetic dataset hunting</subject><ispartof>IEEE transactions on services computing, 2023-09, Vol.16 (5), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-21aabece8771527b0eff942968651db55af5a7b823eb3a2fd323d59a1822276f3</cites><orcidid>0000-0002-7324-5135 ; 0000-0001-9312-0113 ; 0009-0004-3477-604X ; 0009-0003-4791-319X ; 0000-0001-6927-9562 ; 0009-0001-4030-8953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10155231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10155231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tai, Bo-Chen</creatorcontrib><creatorcontrib>Tsou, Yao-Tung</creatorcontrib><creatorcontrib>Li, Szu-Chuang</creatorcontrib><creatorcontrib>Huang, Yennun</creatorcontrib><creatorcontrib>Tsai, Pei-Yuan</creatorcontrib><creatorcontrib>Tsai, Yu-Cheng</creatorcontrib><title>User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description><![CDATA[Recently, releasing data to a third party for secondary analysis has become a trend of service computing. However, data owners are concerned that such a move may expose individuals' records, which is in violation of regulations such as the European Union's General Data Protection Regulation. Differential privacy has been proposed as a possible solution to the aforementioned problem. The privacy budget <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math></inline-formula> in differential privacy is for theoretical interpretation, but in practice, its application in measuring the risk of data disclosure has not been well studied, especially with sampling-based synthetic datasets. Moreover, datasets released by data owners with quantifiable privacy levels and the explicit utility for these datasets have yet to be well developed. In this paper, we present an intuitive approach for defining the privacy level (<inline-formula><tex-math notation="LaTeX">i.e.</tex-math></inline-formula>, data hit rate and <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-level) and utility level (<inline-formula><tex-math notation="LaTeX">i.e.</tex-math></inline-formula>, basic statistics and a series of data mining models), and the privacy budget <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math></inline-formula> is quantified for evaluating the risk and utility of private data. In addition, we propose two user-driven synthetic dataset hunting methods to generate a synthetic dataset with the specified privacy objective, enabling the data owner (<inline-formula><tex-math notation="LaTeX">e.g.</tex-math></inline-formula>, the government and financial companies) to understand the possible privacy risk and thereby release datasets with confirmed privacy level. To the best of our knowledge, this is the first method that allows data providers to automatically generate synthetic datasets with a quantifiable privacy level for the service of open data.]]></description><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; k&lt;/tex-math&gt; &lt;/inline-formula&gt;-level</subject><subject>Budgets</subject><subject>data hit rate</subject><subject>Data mining</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Data protection</subject><subject>Datasets</subject><subject>Differential privacy</subject><subject>Distributed databases</subject><subject>Government</subject><subject>Privacy</subject><subject>Risk</subject><subject>Synthetic data</subject><subject>synthetic dataset hunting</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQRoMoWKt3Dx4WPG9NJpvN5iitVqFQpe05ZLcTmlJ3a5Iq--9NaQ-eBob3fcM8Qu4ZHTFG1dNyMR4BBT7iUEng6oIMgEvIKdDikgyY4ipnXBbX5CaELaUlVJUakPkqoM8n3v1gmy36Nm4wuiabmGgCxmyKLXoTXddmvy5uss-DaaOzztQ7zCbOWvSYFmaXfaQK0_S35MqaXcC78xyS1evLcvyWz-bT9_HzLG-gEDEHZkyNDVZSMgGypmitKkCVVSnYuhbCWGFkXQHHmhuwaw58LZRhFQDI0vIheTz17n33fcAQ9bY7-Dad1Ol_IVIRQKLoiWp8F4JHq_fefRnfa0b1UZtO2vRRmz5rS5GHU8Qh4j-cCQGc8T-w1mkT</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Tai, Bo-Chen</creator><creator>Tsou, Yao-Tung</creator><creator>Li, Szu-Chuang</creator><creator>Huang, Yennun</creator><creator>Tsai, Pei-Yuan</creator><creator>Tsai, Yu-Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7324-5135</orcidid><orcidid>https://orcid.org/0000-0001-9312-0113</orcidid><orcidid>https://orcid.org/0009-0004-3477-604X</orcidid><orcidid>https://orcid.org/0009-0003-4791-319X</orcidid><orcidid>https://orcid.org/0000-0001-6927-9562</orcidid><orcidid>https://orcid.org/0009-0001-4030-8953</orcidid></search><sort><creationdate>20230901</creationdate><title>User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy</title><author>Tai, Bo-Chen ; Tsou, Yao-Tung ; Li, Szu-Chuang ; Huang, Yennun ; Tsai, Pei-Yuan ; Tsai, Yu-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-21aabece8771527b0eff942968651db55af5a7b823eb3a2fd323d59a1822276f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; k&lt;/tex-math&gt; &lt;/inline-formula&gt;-level</topic><topic>Budgets</topic><topic>data hit rate</topic><topic>Data mining</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Data protection</topic><topic>Datasets</topic><topic>Differential privacy</topic><topic>Distributed databases</topic><topic>Government</topic><topic>Privacy</topic><topic>Risk</topic><topic>Synthetic data</topic><topic>synthetic dataset hunting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tai, Bo-Chen</creatorcontrib><creatorcontrib>Tsou, Yao-Tung</creatorcontrib><creatorcontrib>Li, Szu-Chuang</creatorcontrib><creatorcontrib>Huang, Yennun</creatorcontrib><creatorcontrib>Tsai, Pei-Yuan</creatorcontrib><creatorcontrib>Tsai, Yu-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tai, Bo-Chen</au><au>Tsou, Yao-Tung</au><au>Li, Szu-Chuang</au><au>Huang, Yennun</au><au>Tsai, Pei-Yuan</au><au>Tsai, Yu-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>16</volume><issue>5</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract><![CDATA[Recently, releasing data to a third party for secondary analysis has become a trend of service computing. However, data owners are concerned that such a move may expose individuals' records, which is in violation of regulations such as the European Union's General Data Protection Regulation. Differential privacy has been proposed as a possible solution to the aforementioned problem. The privacy budget <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math></inline-formula> in differential privacy is for theoretical interpretation, but in practice, its application in measuring the risk of data disclosure has not been well studied, especially with sampling-based synthetic datasets. Moreover, datasets released by data owners with quantifiable privacy levels and the explicit utility for these datasets have yet to be well developed. In this paper, we present an intuitive approach for defining the privacy level (<inline-formula><tex-math notation="LaTeX">i.e.</tex-math></inline-formula>, data hit rate and <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-level) and utility level (<inline-formula><tex-math notation="LaTeX">i.e.</tex-math></inline-formula>, basic statistics and a series of data mining models), and the privacy budget <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math></inline-formula> is quantified for evaluating the risk and utility of private data. In addition, we propose two user-driven synthetic dataset hunting methods to generate a synthetic dataset with the specified privacy objective, enabling the data owner (<inline-formula><tex-math notation="LaTeX">e.g.</tex-math></inline-formula>, the government and financial companies) to understand the possible privacy risk and thereby release datasets with confirmed privacy level. To the best of our knowledge, this is the first method that allows data providers to automatically generate synthetic datasets with a quantifiable privacy level for the service of open data.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2023.3287239</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7324-5135</orcidid><orcidid>https://orcid.org/0000-0001-9312-0113</orcidid><orcidid>https://orcid.org/0009-0004-3477-604X</orcidid><orcidid>https://orcid.org/0009-0003-4791-319X</orcidid><orcidid>https://orcid.org/0000-0001-6927-9562</orcidid><orcidid>https://orcid.org/0009-0001-4030-8953</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2023-09, Vol.16 (5), p.1-14
issn 1939-1374
2372-0204
language eng
recordid cdi_proquest_journals_2875568622
source IEEE Electronic Library (IEL)
subjects <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> </inline-formula>-level
Budgets
data hit rate
Data mining
Data models
Data privacy
Data protection
Datasets
Differential privacy
Distributed databases
Government
Privacy
Risk
Synthetic data
synthetic dataset hunting
title User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=User-Driven%20Synthetic%20Dataset%20Generation%20with%20Quantifiable%20Differential%20Privacy&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Tai,%20Bo-Chen&rft.date=2023-09-01&rft.volume=16&rft.issue=5&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2023.3287239&rft_dat=%3Cproquest_RIE%3E2875568622%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875568622&rft_id=info:pmid/&rft_ieee_id=10155231&rfr_iscdi=true