Quantum MDS and synchronizable codes from cyclic codes of length 5ps over Fpm

For any odd prime p ≠ 5 , the structures of cyclic codes of length 5 p s over F p m are applied to construct quantum error-correcting codes (briefly, QEC codes). Some new QEC codes are provided in the sense that their parameters are different from all the previous constructions. We give all quantum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable algebra in engineering, communication and computing communication and computing, 2023, Vol.34 (6), p.931-964
Hauptverfasser: Dinh, Hai Q., Nguyen, Bac T., Tansuchat, Roengchai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 964
container_issue 6
container_start_page 931
container_title Applicable algebra in engineering, communication and computing
container_volume 34
creator Dinh, Hai Q.
Nguyen, Bac T.
Tansuchat, Roengchai
description For any odd prime p ≠ 5 , the structures of cyclic codes of length 5 p s over F p m are applied to construct quantum error-correcting codes (briefly, QEC codes). Some new QEC codes are provided in the sense that their parameters are different from all the previous constructions. We give all quantum maximum-distance-separable (briefly, qMDS codes) constructed by the CSS construction. We also construct quantum synchronizable codes (briefly, QSCs). To enrich the variety of available QSCs, many new QSCs are constructed to illustrate our results. Among them, there are QSCs codes with shorter lengths and much larger minimum distances than known primitive narrow-sense BCH codes.
doi_str_mv 10.1007/s00200-021-00531-6
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2875458917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875458917</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-42c3979ccaa203b7a89e7308376460ba235672a7591f6cbe1e0a6991a8a8b9943</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWKt_wFXAdfQmmbyWUm0VWkTUdcikmT6YZsZkRqi_3tEWXF3O5eMc-BC6pnBLAdRdBmAABBglAIJTIk_QiBacEZCMnaIRGK4JZcqco4uctwAgTaFGaPHau9j1O7x4eMMuLnHeR79OTdx8u7IO2DfLkHGVmh32e19v_PHTVLgOcdWtsWiH9BUSnra7S3RWuTqHq-Mdo4_p4_vkicxfZs-T-zlpqVAdKZjnRhnvnWPAS-W0CYqD5koWEkrHuJCKOSUMraQvAw3gpDHUaadLYwo-RjeH3jY1n33Ind02fYrDpGVaiUJoQ9VA8QOV27SJq5D-KQr215s9eLODN_vnzUr-A6qMXrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875458917</pqid></control><display><type>article</type><title>Quantum MDS and synchronizable codes from cyclic codes of length 5ps over Fpm</title><source>SpringerLink Journals</source><creator>Dinh, Hai Q. ; Nguyen, Bac T. ; Tansuchat, Roengchai</creator><creatorcontrib>Dinh, Hai Q. ; Nguyen, Bac T. ; Tansuchat, Roengchai</creatorcontrib><description>For any odd prime p ≠ 5 , the structures of cyclic codes of length 5 p s over F p m are applied to construct quantum error-correcting codes (briefly, QEC codes). Some new QEC codes are provided in the sense that their parameters are different from all the previous constructions. We give all quantum maximum-distance-separable (briefly, qMDS codes) constructed by the CSS construction. We also construct quantum synchronizable codes (briefly, QSCs). To enrich the variety of available QSCs, many new QSCs are constructed to illustrate our results. Among them, there are QSCs codes with shorter lengths and much larger minimum distances than known primitive narrow-sense BCH codes.</description><identifier>ISSN: 0938-1279</identifier><identifier>EISSN: 1432-0622</identifier><identifier>DOI: 10.1007/s00200-021-00531-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; BCH codes ; Computer Hardware ; Computer Science ; Error correcting codes ; Error correction ; Original Paper ; Symbolic and Algebraic Manipulation ; Theory of Computation</subject><ispartof>Applicable algebra in engineering, communication and computing, 2023, Vol.34 (6), p.931-964</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-42c3979ccaa203b7a89e7308376460ba235672a7591f6cbe1e0a6991a8a8b9943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00200-021-00531-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00200-021-00531-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dinh, Hai Q.</creatorcontrib><creatorcontrib>Nguyen, Bac T.</creatorcontrib><creatorcontrib>Tansuchat, Roengchai</creatorcontrib><title>Quantum MDS and synchronizable codes from cyclic codes of length 5ps over Fpm</title><title>Applicable algebra in engineering, communication and computing</title><addtitle>AAECC</addtitle><description>For any odd prime p ≠ 5 , the structures of cyclic codes of length 5 p s over F p m are applied to construct quantum error-correcting codes (briefly, QEC codes). Some new QEC codes are provided in the sense that their parameters are different from all the previous constructions. We give all quantum maximum-distance-separable (briefly, qMDS codes) constructed by the CSS construction. We also construct quantum synchronizable codes (briefly, QSCs). To enrich the variety of available QSCs, many new QSCs are constructed to illustrate our results. Among them, there are QSCs codes with shorter lengths and much larger minimum distances than known primitive narrow-sense BCH codes.</description><subject>Artificial Intelligence</subject><subject>BCH codes</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Original Paper</subject><subject>Symbolic and Algebraic Manipulation</subject><subject>Theory of Computation</subject><issn>0938-1279</issn><issn>1432-0622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEtLAzEUhYMoWKt_wFXAdfQmmbyWUm0VWkTUdcikmT6YZsZkRqi_3tEWXF3O5eMc-BC6pnBLAdRdBmAABBglAIJTIk_QiBacEZCMnaIRGK4JZcqco4uctwAgTaFGaPHau9j1O7x4eMMuLnHeR79OTdx8u7IO2DfLkHGVmh32e19v_PHTVLgOcdWtsWiH9BUSnra7S3RWuTqHq-Mdo4_p4_vkicxfZs-T-zlpqVAdKZjnRhnvnWPAS-W0CYqD5koWEkrHuJCKOSUMraQvAw3gpDHUaadLYwo-RjeH3jY1n33Ind02fYrDpGVaiUJoQ9VA8QOV27SJq5D-KQr215s9eLODN_vnzUr-A6qMXrI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Dinh, Hai Q.</creator><creator>Nguyen, Bac T.</creator><creator>Tansuchat, Roengchai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2023</creationdate><title>Quantum MDS and synchronizable codes from cyclic codes of length 5ps over Fpm</title><author>Dinh, Hai Q. ; Nguyen, Bac T. ; Tansuchat, Roengchai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-42c3979ccaa203b7a89e7308376460ba235672a7591f6cbe1e0a6991a8a8b9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>BCH codes</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Original Paper</topic><topic>Symbolic and Algebraic Manipulation</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinh, Hai Q.</creatorcontrib><creatorcontrib>Nguyen, Bac T.</creatorcontrib><creatorcontrib>Tansuchat, Roengchai</creatorcontrib><jtitle>Applicable algebra in engineering, communication and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, Hai Q.</au><au>Nguyen, Bac T.</au><au>Tansuchat, Roengchai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum MDS and synchronizable codes from cyclic codes of length 5ps over Fpm</atitle><jtitle>Applicable algebra in engineering, communication and computing</jtitle><stitle>AAECC</stitle><date>2023</date><risdate>2023</risdate><volume>34</volume><issue>6</issue><spage>931</spage><epage>964</epage><pages>931-964</pages><issn>0938-1279</issn><eissn>1432-0622</eissn><abstract>For any odd prime p ≠ 5 , the structures of cyclic codes of length 5 p s over F p m are applied to construct quantum error-correcting codes (briefly, QEC codes). Some new QEC codes are provided in the sense that their parameters are different from all the previous constructions. We give all quantum maximum-distance-separable (briefly, qMDS codes) constructed by the CSS construction. We also construct quantum synchronizable codes (briefly, QSCs). To enrich the variety of available QSCs, many new QSCs are constructed to illustrate our results. Among them, there are QSCs codes with shorter lengths and much larger minimum distances than known primitive narrow-sense BCH codes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00200-021-00531-6</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-1279
ispartof Applicable algebra in engineering, communication and computing, 2023, Vol.34 (6), p.931-964
issn 0938-1279
1432-0622
language eng
recordid cdi_proquest_journals_2875458917
source SpringerLink Journals
subjects Artificial Intelligence
BCH codes
Computer Hardware
Computer Science
Error correcting codes
Error correction
Original Paper
Symbolic and Algebraic Manipulation
Theory of Computation
title Quantum MDS and synchronizable codes from cyclic codes of length 5ps over Fpm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20MDS%20and%20synchronizable%20codes%20from%20cyclic%20codes%20of%20length%205ps%20over%20Fpm&rft.jtitle=Applicable%20algebra%20in%20engineering,%20communication%20and%20computing&rft.au=Dinh,%20Hai%20Q.&rft.date=2023&rft.volume=34&rft.issue=6&rft.spage=931&rft.epage=964&rft.pages=931-964&rft.issn=0938-1279&rft.eissn=1432-0622&rft_id=info:doi/10.1007/s00200-021-00531-6&rft_dat=%3Cproquest_sprin%3E2875458917%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875458917&rft_id=info:pmid/&rfr_iscdi=true