Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes
Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2023-10, Vol.16 (10), p.4539-4548 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4548 |
---|---|
container_issue | 10 |
container_start_page | 4539 |
container_title | Energy & environmental science |
container_volume | 16 |
creator | Pascual, Marc Chapuis, Nicolas Abdelghani-Idrissi, Soufiane Marie-Caroline Jullien Siria, Alessandro Bocquet, Lydéric |
description | Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this paper we present a method to convert low temperature waste heat (T < 100 °C) into salinity gradients, from which osmotic power is harvested across a nanoporous membrane. The heat is used to trigger the phase separation of a lower critical solution temperature (LCST) water–ionic liquid mixture. The two phases, of different salt concentrations, are fed in two reservoirs separated by a membrane with nanopores ≈30–100 nm in diameter. An osmotic electric current is measured across the membrane for various concentration ratios and pHs, the origin of which is shown to be a diffusio-osmotic (DO) process occurring at the TiO2 pore surface. The power density across the nanoporous TiO2 membrane is found to reach 7 W m−2. This opens up new avenues for the harvesting of waste-heat using nanoporous membranes and ionic liquids in a closed-loop configuration. |
doi_str_mv | 10.1039/d3ee00654a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2875328528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875328528</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-f9b93b287dff7c50edd9d4289837e59267a0e929d3aff8cb668d4c93878b258a3</originalsourceid><addsrcrecordid>eNo1jV1LwzAYhYMoOKc3_oKA19U0ab4uZagTBruZeDnS5O2a0SZd0g727y2oV-fAeXgOQo8leS4J0y-OARAieGWu0KKUvCq4JOL6vwtNb9FdzseZoUTqBeq-TR4Bt2BGnMDGM6QLnrIPBzy2kHrTdZd5yEMM2Z8B-xi8xZ0_Td7lGUlxOrR457cUBxPiEBNgExzujU0x2zjMdA99nUyAfI9uGtNlePjLJfp6f9ut1sVm-_G5et0UQ6nYWDS61qymSrqmkZYTcE67iiqtmASuqZCGgKbaMdM0ytZCKFdZzZRUNeXKsCV6-vUOKZ4myOP-GKcU5sv9bOWMKk4V-wG_jVw3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875328528</pqid></control><display><type>article</type><title>Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pascual, Marc ; Chapuis, Nicolas ; Abdelghani-Idrissi, Soufiane ; Marie-Caroline Jullien ; Siria, Alessandro ; Bocquet, Lydéric</creator><creatorcontrib>Pascual, Marc ; Chapuis, Nicolas ; Abdelghani-Idrissi, Soufiane ; Marie-Caroline Jullien ; Siria, Alessandro ; Bocquet, Lydéric</creatorcontrib><description>Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this paper we present a method to convert low temperature waste heat (T < 100 °C) into salinity gradients, from which osmotic power is harvested across a nanoporous membrane. The heat is used to trigger the phase separation of a lower critical solution temperature (LCST) water–ionic liquid mixture. The two phases, of different salt concentrations, are fed in two reservoirs separated by a membrane with nanopores ≈30–100 nm in diameter. An osmotic electric current is measured across the membrane for various concentration ratios and pHs, the origin of which is shown to be a diffusio-osmotic (DO) process occurring at the TiO2 pore surface. The power density across the nanoporous TiO2 membrane is found to reach 7 W m−2. This opens up new avenues for the harvesting of waste-heat using nanoporous membranes and ionic liquids in a closed-loop configuration.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d3ee00654a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Closed loops ; Diameters ; Energy sources ; Heat ; Heat recovery ; Industrial wastes ; Ionic liquids ; Low temperature ; Membranes ; Phase separation ; Titanium dioxide ; Waste heat ; Waste heat recovery ; Waste recovery</subject><ispartof>Energy & environmental science, 2023-10, Vol.16 (10), p.4539-4548</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pascual, Marc</creatorcontrib><creatorcontrib>Chapuis, Nicolas</creatorcontrib><creatorcontrib>Abdelghani-Idrissi, Soufiane</creatorcontrib><creatorcontrib>Marie-Caroline Jullien</creatorcontrib><creatorcontrib>Siria, Alessandro</creatorcontrib><creatorcontrib>Bocquet, Lydéric</creatorcontrib><title>Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes</title><title>Energy & environmental science</title><description>Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this paper we present a method to convert low temperature waste heat (T < 100 °C) into salinity gradients, from which osmotic power is harvested across a nanoporous membrane. The heat is used to trigger the phase separation of a lower critical solution temperature (LCST) water–ionic liquid mixture. The two phases, of different salt concentrations, are fed in two reservoirs separated by a membrane with nanopores ≈30–100 nm in diameter. An osmotic electric current is measured across the membrane for various concentration ratios and pHs, the origin of which is shown to be a diffusio-osmotic (DO) process occurring at the TiO2 pore surface. The power density across the nanoporous TiO2 membrane is found to reach 7 W m−2. This opens up new avenues for the harvesting of waste-heat using nanoporous membranes and ionic liquids in a closed-loop configuration.</description><subject>Closed loops</subject><subject>Diameters</subject><subject>Energy sources</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Industrial wastes</subject><subject>Ionic liquids</subject><subject>Low temperature</subject><subject>Membranes</subject><subject>Phase separation</subject><subject>Titanium dioxide</subject><subject>Waste heat</subject><subject>Waste heat recovery</subject><subject>Waste recovery</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1jV1LwzAYhYMoOKc3_oKA19U0ab4uZagTBruZeDnS5O2a0SZd0g727y2oV-fAeXgOQo8leS4J0y-OARAieGWu0KKUvCq4JOL6vwtNb9FdzseZoUTqBeq-TR4Bt2BGnMDGM6QLnrIPBzy2kHrTdZd5yEMM2Z8B-xi8xZ0_Td7lGUlxOrR457cUBxPiEBNgExzujU0x2zjMdA99nUyAfI9uGtNlePjLJfp6f9ut1sVm-_G5et0UQ6nYWDS61qymSrqmkZYTcE67iiqtmASuqZCGgKbaMdM0ytZCKFdZzZRUNeXKsCV6-vUOKZ4myOP-GKcU5sv9bOWMKk4V-wG_jVw3</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Pascual, Marc</creator><creator>Chapuis, Nicolas</creator><creator>Abdelghani-Idrissi, Soufiane</creator><creator>Marie-Caroline Jullien</creator><creator>Siria, Alessandro</creator><creator>Bocquet, Lydéric</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20231011</creationdate><title>Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes</title><author>Pascual, Marc ; Chapuis, Nicolas ; Abdelghani-Idrissi, Soufiane ; Marie-Caroline Jullien ; Siria, Alessandro ; Bocquet, Lydéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-f9b93b287dff7c50edd9d4289837e59267a0e929d3aff8cb668d4c93878b258a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Closed loops</topic><topic>Diameters</topic><topic>Energy sources</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Industrial wastes</topic><topic>Ionic liquids</topic><topic>Low temperature</topic><topic>Membranes</topic><topic>Phase separation</topic><topic>Titanium dioxide</topic><topic>Waste heat</topic><topic>Waste heat recovery</topic><topic>Waste recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pascual, Marc</creatorcontrib><creatorcontrib>Chapuis, Nicolas</creatorcontrib><creatorcontrib>Abdelghani-Idrissi, Soufiane</creatorcontrib><creatorcontrib>Marie-Caroline Jullien</creatorcontrib><creatorcontrib>Siria, Alessandro</creatorcontrib><creatorcontrib>Bocquet, Lydéric</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pascual, Marc</au><au>Chapuis, Nicolas</au><au>Abdelghani-Idrissi, Soufiane</au><au>Marie-Caroline Jullien</au><au>Siria, Alessandro</au><au>Bocquet, Lydéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes</atitle><jtitle>Energy & environmental science</jtitle><date>2023-10-11</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>4539</spage><epage>4548</epage><pages>4539-4548</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this paper we present a method to convert low temperature waste heat (T < 100 °C) into salinity gradients, from which osmotic power is harvested across a nanoporous membrane. The heat is used to trigger the phase separation of a lower critical solution temperature (LCST) water–ionic liquid mixture. The two phases, of different salt concentrations, are fed in two reservoirs separated by a membrane with nanopores ≈30–100 nm in diameter. An osmotic electric current is measured across the membrane for various concentration ratios and pHs, the origin of which is shown to be a diffusio-osmotic (DO) process occurring at the TiO2 pore surface. The power density across the nanoporous TiO2 membrane is found to reach 7 W m−2. This opens up new avenues for the harvesting of waste-heat using nanoporous membranes and ionic liquids in a closed-loop configuration.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ee00654a</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2023-10, Vol.16 (10), p.4539-4548 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2875328528 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Closed loops Diameters Energy sources Heat Heat recovery Industrial wastes Ionic liquids Low temperature Membranes Phase separation Titanium dioxide Waste heat Waste heat recovery Waste recovery |
title | Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waste%20heat%20recovery%20using%20thermally%20responsive%20ionic%20liquids%20through%20TiO2%20nanopore%20and%20macroscopic%20membranes&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Pascual,%20Marc&rft.date=2023-10-11&rft.volume=16&rft.issue=10&rft.spage=4539&rft.epage=4548&rft.pages=4539-4548&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d3ee00654a&rft_dat=%3Cproquest%3E2875328528%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875328528&rft_id=info:pmid/&rfr_iscdi=true |