Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes

Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-10, Vol.16 (10), p.4539-4548
Hauptverfasser: Pascual, Marc, Chapuis, Nicolas, Abdelghani-Idrissi, Soufiane, Marie-Caroline Jullien, Siria, Alessandro, Bocquet, Lydéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4548
container_issue 10
container_start_page 4539
container_title Energy & environmental science
container_volume 16
creator Pascual, Marc
Chapuis, Nicolas
Abdelghani-Idrissi, Soufiane
Marie-Caroline Jullien
Siria, Alessandro
Bocquet, Lydéric
description Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this paper we present a method to convert low temperature waste heat (T < 100 °C) into salinity gradients, from which osmotic power is harvested across a nanoporous membrane. The heat is used to trigger the phase separation of a lower critical solution temperature (LCST) water–ionic liquid mixture. The two phases, of different salt concentrations, are fed in two reservoirs separated by a membrane with nanopores ≈30–100 nm in diameter. An osmotic electric current is measured across the membrane for various concentration ratios and pHs, the origin of which is shown to be a diffusio-osmotic (DO) process occurring at the TiO2 pore surface. The power density across the nanoporous TiO2 membrane is found to reach 7 W m−2. This opens up new avenues for the harvesting of waste-heat using nanoporous membranes and ionic liquids in a closed-loop configuration.
doi_str_mv 10.1039/d3ee00654a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2875328528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875328528</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-f9b93b287dff7c50edd9d4289837e59267a0e929d3aff8cb668d4c93878b258a3</originalsourceid><addsrcrecordid>eNo1jV1LwzAYhYMoOKc3_oKA19U0ab4uZagTBruZeDnS5O2a0SZd0g727y2oV-fAeXgOQo8leS4J0y-OARAieGWu0KKUvCq4JOL6vwtNb9FdzseZoUTqBeq-TR4Bt2BGnMDGM6QLnrIPBzy2kHrTdZd5yEMM2Z8B-xi8xZ0_Td7lGUlxOrR457cUBxPiEBNgExzujU0x2zjMdA99nUyAfI9uGtNlePjLJfp6f9ut1sVm-_G5et0UQ6nYWDS61qymSrqmkZYTcE67iiqtmASuqZCGgKbaMdM0ytZCKFdZzZRUNeXKsCV6-vUOKZ4myOP-GKcU5sv9bOWMKk4V-wG_jVw3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875328528</pqid></control><display><type>article</type><title>Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pascual, Marc ; Chapuis, Nicolas ; Abdelghani-Idrissi, Soufiane ; Marie-Caroline Jullien ; Siria, Alessandro ; Bocquet, Lydéric</creator><creatorcontrib>Pascual, Marc ; Chapuis, Nicolas ; Abdelghani-Idrissi, Soufiane ; Marie-Caroline Jullien ; Siria, Alessandro ; Bocquet, Lydéric</creatorcontrib><description>Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this paper we present a method to convert low temperature waste heat (T &lt; 100 °C) into salinity gradients, from which osmotic power is harvested across a nanoporous membrane. The heat is used to trigger the phase separation of a lower critical solution temperature (LCST) water–ionic liquid mixture. The two phases, of different salt concentrations, are fed in two reservoirs separated by a membrane with nanopores ≈30–100 nm in diameter. An osmotic electric current is measured across the membrane for various concentration ratios and pHs, the origin of which is shown to be a diffusio-osmotic (DO) process occurring at the TiO2 pore surface. The power density across the nanoporous TiO2 membrane is found to reach 7 W m−2. This opens up new avenues for the harvesting of waste-heat using nanoporous membranes and ionic liquids in a closed-loop configuration.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d3ee00654a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Closed loops ; Diameters ; Energy sources ; Heat ; Heat recovery ; Industrial wastes ; Ionic liquids ; Low temperature ; Membranes ; Phase separation ; Titanium dioxide ; Waste heat ; Waste heat recovery ; Waste recovery</subject><ispartof>Energy &amp; environmental science, 2023-10, Vol.16 (10), p.4539-4548</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pascual, Marc</creatorcontrib><creatorcontrib>Chapuis, Nicolas</creatorcontrib><creatorcontrib>Abdelghani-Idrissi, Soufiane</creatorcontrib><creatorcontrib>Marie-Caroline Jullien</creatorcontrib><creatorcontrib>Siria, Alessandro</creatorcontrib><creatorcontrib>Bocquet, Lydéric</creatorcontrib><title>Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes</title><title>Energy &amp; environmental science</title><description>Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this paper we present a method to convert low temperature waste heat (T &lt; 100 °C) into salinity gradients, from which osmotic power is harvested across a nanoporous membrane. The heat is used to trigger the phase separation of a lower critical solution temperature (LCST) water–ionic liquid mixture. The two phases, of different salt concentrations, are fed in two reservoirs separated by a membrane with nanopores ≈30–100 nm in diameter. An osmotic electric current is measured across the membrane for various concentration ratios and pHs, the origin of which is shown to be a diffusio-osmotic (DO) process occurring at the TiO2 pore surface. The power density across the nanoporous TiO2 membrane is found to reach 7 W m−2. This opens up new avenues for the harvesting of waste-heat using nanoporous membranes and ionic liquids in a closed-loop configuration.</description><subject>Closed loops</subject><subject>Diameters</subject><subject>Energy sources</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Industrial wastes</subject><subject>Ionic liquids</subject><subject>Low temperature</subject><subject>Membranes</subject><subject>Phase separation</subject><subject>Titanium dioxide</subject><subject>Waste heat</subject><subject>Waste heat recovery</subject><subject>Waste recovery</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1jV1LwzAYhYMoOKc3_oKA19U0ab4uZagTBruZeDnS5O2a0SZd0g727y2oV-fAeXgOQo8leS4J0y-OARAieGWu0KKUvCq4JOL6vwtNb9FdzseZoUTqBeq-TR4Bt2BGnMDGM6QLnrIPBzy2kHrTdZd5yEMM2Z8B-xi8xZ0_Td7lGUlxOrR457cUBxPiEBNgExzujU0x2zjMdA99nUyAfI9uGtNlePjLJfp6f9ut1sVm-_G5et0UQ6nYWDS61qymSrqmkZYTcE67iiqtmASuqZCGgKbaMdM0ytZCKFdZzZRUNeXKsCV6-vUOKZ4myOP-GKcU5sv9bOWMKk4V-wG_jVw3</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Pascual, Marc</creator><creator>Chapuis, Nicolas</creator><creator>Abdelghani-Idrissi, Soufiane</creator><creator>Marie-Caroline Jullien</creator><creator>Siria, Alessandro</creator><creator>Bocquet, Lydéric</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20231011</creationdate><title>Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes</title><author>Pascual, Marc ; Chapuis, Nicolas ; Abdelghani-Idrissi, Soufiane ; Marie-Caroline Jullien ; Siria, Alessandro ; Bocquet, Lydéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-f9b93b287dff7c50edd9d4289837e59267a0e929d3aff8cb668d4c93878b258a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Closed loops</topic><topic>Diameters</topic><topic>Energy sources</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Industrial wastes</topic><topic>Ionic liquids</topic><topic>Low temperature</topic><topic>Membranes</topic><topic>Phase separation</topic><topic>Titanium dioxide</topic><topic>Waste heat</topic><topic>Waste heat recovery</topic><topic>Waste recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pascual, Marc</creatorcontrib><creatorcontrib>Chapuis, Nicolas</creatorcontrib><creatorcontrib>Abdelghani-Idrissi, Soufiane</creatorcontrib><creatorcontrib>Marie-Caroline Jullien</creatorcontrib><creatorcontrib>Siria, Alessandro</creatorcontrib><creatorcontrib>Bocquet, Lydéric</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pascual, Marc</au><au>Chapuis, Nicolas</au><au>Abdelghani-Idrissi, Soufiane</au><au>Marie-Caroline Jullien</au><au>Siria, Alessandro</au><au>Bocquet, Lydéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-10-11</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>4539</spage><epage>4548</epage><pages>4539-4548</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Waste heat is the untapped heat produced by a thermodynamic process. It is usually released into the surrounding environment without any valorization. But recently, industrial waste heat has been identified as a promising energy source and many techniques have been proposed for its recovery. In this paper we present a method to convert low temperature waste heat (T &lt; 100 °C) into salinity gradients, from which osmotic power is harvested across a nanoporous membrane. The heat is used to trigger the phase separation of a lower critical solution temperature (LCST) water–ionic liquid mixture. The two phases, of different salt concentrations, are fed in two reservoirs separated by a membrane with nanopores ≈30–100 nm in diameter. An osmotic electric current is measured across the membrane for various concentration ratios and pHs, the origin of which is shown to be a diffusio-osmotic (DO) process occurring at the TiO2 pore surface. The power density across the nanoporous TiO2 membrane is found to reach 7 W m−2. This opens up new avenues for the harvesting of waste-heat using nanoporous membranes and ionic liquids in a closed-loop configuration.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ee00654a</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-10, Vol.16 (10), p.4539-4548
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2875328528
source Royal Society Of Chemistry Journals 2008-
subjects Closed loops
Diameters
Energy sources
Heat
Heat recovery
Industrial wastes
Ionic liquids
Low temperature
Membranes
Phase separation
Titanium dioxide
Waste heat
Waste heat recovery
Waste recovery
title Waste heat recovery using thermally responsive ionic liquids through TiO2 nanopore and macroscopic membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waste%20heat%20recovery%20using%20thermally%20responsive%20ionic%20liquids%20through%20TiO2%20nanopore%20and%20macroscopic%20membranes&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Pascual,%20Marc&rft.date=2023-10-11&rft.volume=16&rft.issue=10&rft.spage=4539&rft.epage=4548&rft.pages=4539-4548&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d3ee00654a&rft_dat=%3Cproquest%3E2875328528%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875328528&rft_id=info:pmid/&rfr_iscdi=true