Research on detection and classification of traffic signs with data augmentation
Traffic Sign Detection and Recognition (TSDR) system is an important part of autonomous driver-assistance systems (ADAS), and a hot topic in computer vision research. With the instance segmentation framework proposed, deep learning has entered a new stage. However, the current traffic sign dataset c...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2023-10, Vol.82 (25), p.38875-38899 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38899 |
---|---|
container_issue | 25 |
container_start_page | 38875 |
container_title | Multimedia tools and applications |
container_volume | 82 |
creator | Yao, Jiana Chu, Yinze Xiang, Xinjian Huang, Bingqiang Xiaoli, Wu |
description | Traffic Sign Detection and Recognition (TSDR) system is an important part of autonomous driver-assistance systems (ADAS), and a hot topic in computer vision research. With the instance segmentation framework proposed, deep learning has entered a new stage. However, the current traffic sign dataset can only evaluate the performance of object detection framework. In this paper, a new large-scale ZUST Chinese traffic sign dataset benchmark (ZCTSDB) is created to assess the performance of the object detection and instance segmentation framework. ZCTSDB adopts seven different image amplification strategies to enhance the data, which improves the balance of the traffic sign category in the training concentration. The results showed that the average accuracy of ZCTSDB-augmentation object detection and instance segmentation increased by 1.963% and 1.4218%, respectively, especially for large traffic signs. Mask R-CNN has better detection and anti-interference performance than Faster RCNN. The
mAP
of Mask R-CNN is as high as 74.0580. |
doi_str_mv | 10.1007/s11042-023-14895-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2875205527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875205527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-244934a43cd60e74853a5b467b1338b42dbbfeabca380c435ec4a6e65cf958053</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytdkepfgFBUX0HGaz2XZLu1uTLGJ_vbErePM07wzPOzO8hFxyuOYA5iZyDkowEJJxVc402x-RCddGMmMEP85alsCMBn5KzmJcA_BCCzUhL68-egxuRfuO1j55l9qssKup22CMbdM6PIz6hqaATe5pbJddpJ9tWtEaE1IcllvfpQN3Tk4a3ER_8Vun5P3-7m3-yBbPD0_z2wVzwkBiQqmZVKikqwvwRpVaoq5UYSouZVkpUVdV47FymB93SmrvFBa-0K6Z6RK0nJKrce8u9B-Dj8mu-yF0-aQVpdECtBYmU2KkXOhjDL6xu9BuMXxZDvYnOTsmZ3Ny9pCc3WeTHE0xw93Sh7_V_7i-AabXce4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875205527</pqid></control><display><type>article</type><title>Research on detection and classification of traffic signs with data augmentation</title><source>Springer Nature - Complete Springer Journals</source><creator>Yao, Jiana ; Chu, Yinze ; Xiang, Xinjian ; Huang, Bingqiang ; Xiaoli, Wu</creator><creatorcontrib>Yao, Jiana ; Chu, Yinze ; Xiang, Xinjian ; Huang, Bingqiang ; Xiaoli, Wu</creatorcontrib><description>Traffic Sign Detection and Recognition (TSDR) system is an important part of autonomous driver-assistance systems (ADAS), and a hot topic in computer vision research. With the instance segmentation framework proposed, deep learning has entered a new stage. However, the current traffic sign dataset can only evaluate the performance of object detection framework. In this paper, a new large-scale ZUST Chinese traffic sign dataset benchmark (ZCTSDB) is created to assess the performance of the object detection and instance segmentation framework. ZCTSDB adopts seven different image amplification strategies to enhance the data, which improves the balance of the traffic sign category in the training concentration. The results showed that the average accuracy of ZCTSDB-augmentation object detection and instance segmentation increased by 1.963% and 1.4218%, respectively, especially for large traffic signs. Mask R-CNN has better detection and anti-interference performance than Faster RCNN. The
mAP
of Mask R-CNN is as high as 74.0580.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-14895-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Advanced driver assistance systems ; Classification ; Computer Communication Networks ; Computer Science ; Computer vision ; Data augmentation ; Data Structures and Information Theory ; Datasets ; Deep learning ; Image enhancement ; Image segmentation ; Machine learning ; Multimedia ; Multimedia Information Systems ; Neural networks ; Object recognition ; Performance evaluation ; Signs ; Special Purpose and Application-Based Systems ; Traffic control ; Traffic signs</subject><ispartof>Multimedia tools and applications, 2023-10, Vol.82 (25), p.38875-38899</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-244934a43cd60e74853a5b467b1338b42dbbfeabca380c435ec4a6e65cf958053</cites><orcidid>0000-0001-8226-3960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-14895-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-14895-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Yao, Jiana</creatorcontrib><creatorcontrib>Chu, Yinze</creatorcontrib><creatorcontrib>Xiang, Xinjian</creatorcontrib><creatorcontrib>Huang, Bingqiang</creatorcontrib><creatorcontrib>Xiaoli, Wu</creatorcontrib><title>Research on detection and classification of traffic signs with data augmentation</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Traffic Sign Detection and Recognition (TSDR) system is an important part of autonomous driver-assistance systems (ADAS), and a hot topic in computer vision research. With the instance segmentation framework proposed, deep learning has entered a new stage. However, the current traffic sign dataset can only evaluate the performance of object detection framework. In this paper, a new large-scale ZUST Chinese traffic sign dataset benchmark (ZCTSDB) is created to assess the performance of the object detection and instance segmentation framework. ZCTSDB adopts seven different image amplification strategies to enhance the data, which improves the balance of the traffic sign category in the training concentration. The results showed that the average accuracy of ZCTSDB-augmentation object detection and instance segmentation increased by 1.963% and 1.4218%, respectively, especially for large traffic signs. Mask R-CNN has better detection and anti-interference performance than Faster RCNN. The
mAP
of Mask R-CNN is as high as 74.0580.</description><subject>Accuracy</subject><subject>Advanced driver assistance systems</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Data augmentation</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Signs</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Traffic control</subject><subject>Traffic signs</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytdkepfgFBUX0HGaz2XZLu1uTLGJ_vbErePM07wzPOzO8hFxyuOYA5iZyDkowEJJxVc402x-RCddGMmMEP85alsCMBn5KzmJcA_BCCzUhL68-egxuRfuO1j55l9qssKup22CMbdM6PIz6hqaATe5pbJddpJ9tWtEaE1IcllvfpQN3Tk4a3ER_8Vun5P3-7m3-yBbPD0_z2wVzwkBiQqmZVKikqwvwRpVaoq5UYSouZVkpUVdV47FymB93SmrvFBa-0K6Z6RK0nJKrce8u9B-Dj8mu-yF0-aQVpdECtBYmU2KkXOhjDL6xu9BuMXxZDvYnOTsmZ3Ny9pCc3WeTHE0xw93Sh7_V_7i-AabXce4</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Yao, Jiana</creator><creator>Chu, Yinze</creator><creator>Xiang, Xinjian</creator><creator>Huang, Bingqiang</creator><creator>Xiaoli, Wu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8226-3960</orcidid></search><sort><creationdate>20231001</creationdate><title>Research on detection and classification of traffic signs with data augmentation</title><author>Yao, Jiana ; Chu, Yinze ; Xiang, Xinjian ; Huang, Bingqiang ; Xiaoli, Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-244934a43cd60e74853a5b467b1338b42dbbfeabca380c435ec4a6e65cf958053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Advanced driver assistance systems</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Data augmentation</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Signs</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Traffic control</topic><topic>Traffic signs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Jiana</creatorcontrib><creatorcontrib>Chu, Yinze</creatorcontrib><creatorcontrib>Xiang, Xinjian</creatorcontrib><creatorcontrib>Huang, Bingqiang</creatorcontrib><creatorcontrib>Xiaoli, Wu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Jiana</au><au>Chu, Yinze</au><au>Xiang, Xinjian</au><au>Huang, Bingqiang</au><au>Xiaoli, Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on detection and classification of traffic signs with data augmentation</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>82</volume><issue>25</issue><spage>38875</spage><epage>38899</epage><pages>38875-38899</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Traffic Sign Detection and Recognition (TSDR) system is an important part of autonomous driver-assistance systems (ADAS), and a hot topic in computer vision research. With the instance segmentation framework proposed, deep learning has entered a new stage. However, the current traffic sign dataset can only evaluate the performance of object detection framework. In this paper, a new large-scale ZUST Chinese traffic sign dataset benchmark (ZCTSDB) is created to assess the performance of the object detection and instance segmentation framework. ZCTSDB adopts seven different image amplification strategies to enhance the data, which improves the balance of the traffic sign category in the training concentration. The results showed that the average accuracy of ZCTSDB-augmentation object detection and instance segmentation increased by 1.963% and 1.4218%, respectively, especially for large traffic signs. Mask R-CNN has better detection and anti-interference performance than Faster RCNN. The
mAP
of Mask R-CNN is as high as 74.0580.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-14895-z</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-8226-3960</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2023-10, Vol.82 (25), p.38875-38899 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2875205527 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Advanced driver assistance systems Classification Computer Communication Networks Computer Science Computer vision Data augmentation Data Structures and Information Theory Datasets Deep learning Image enhancement Image segmentation Machine learning Multimedia Multimedia Information Systems Neural networks Object recognition Performance evaluation Signs Special Purpose and Application-Based Systems Traffic control Traffic signs |
title | Research on detection and classification of traffic signs with data augmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20detection%20and%20classification%20of%20traffic%20signs%20with%20data%20augmentation&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Yao,%20Jiana&rft.date=2023-10-01&rft.volume=82&rft.issue=25&rft.spage=38875&rft.epage=38899&rft.pages=38875-38899&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-14895-z&rft_dat=%3Cproquest_cross%3E2875205527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875205527&rft_id=info:pmid/&rfr_iscdi=true |