Pathfollowing for parametric mathematical programs with complementarity constraints
In this paper we study procedures for pathfollowing parametric mathematical programs with complementarity constraints. We present two algorithms, one based on the penalty approach for solving standalone MPCCs, and one based on tracing active set bifurcations arising from doubly-active complementarit...
Gespeichert in:
Veröffentlicht in: | Optimization and engineering 2023-12, Vol.24 (4), p.2795-2826 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2826 |
---|---|
container_issue | 4 |
container_start_page | 2795 |
container_title | Optimization and engineering |
container_volume | 24 |
creator | Kungurtsev, Vyacheslav Jäschke, Johannes |
description | In this paper we study procedures for pathfollowing parametric mathematical programs with complementarity constraints. We present two algorithms, one based on the penalty approach for solving standalone MPCCs, and one based on tracing active set bifurcations arising from doubly-active complementarity constraints. We demonstrate the performance of these two approaches on a variety of examples with different types of stationary points and also a simple engineering problem with phase changes. |
doi_str_mv | 10.1007/s11081-023-09794-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874976619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874976619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9d8e1e883f9102dbd8770ab74d8bda2b23be6f99e308c3a56f489083ccc14c3f3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6AqwHX0bw6SZZSfIGgoK5DJpO0KTOTMUkp7dcbHcGdm_vgPO7lAHCJ0TVGiN8kjJHAEBEKkeSSwcMRmOEFp5BIwo7LTIWEjBF0Cs5S2iCE6wURM_D2qvPaha4LOz-sKhdiNeqoe5ujN1VfQFuKN7qrxhhWBUnVzud1ZUI_dra3Q9bR533Zh5Sj9kNO5-DE6S7Zi98-Bx_3d-_LR_j88vC0vH2GhmKWoWyFxVYI6iRGpG1awTnSDWetaFpNGkIbWzspLUXCUL2oHRMSCWqMwcxQR-fgavItn31ubcpqE7ZxKCcVEZxJXtdYFhaZWCaGlKJ1aoy-13GvMFLf4akpPFXCUz_hqUMR0UmUCnlY2fhn_Y_qC2VydSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874976619</pqid></control><display><type>article</type><title>Pathfollowing for parametric mathematical programs with complementarity constraints</title><source>Springer Nature - Complete Springer Journals</source><creator>Kungurtsev, Vyacheslav ; Jäschke, Johannes</creator><creatorcontrib>Kungurtsev, Vyacheslav ; Jäschke, Johannes</creatorcontrib><description>In this paper we study procedures for pathfollowing parametric mathematical programs with complementarity constraints. We present two algorithms, one based on the penalty approach for solving standalone MPCCs, and one based on tracing active set bifurcations arising from doubly-active complementarity constraints. We demonstrate the performance of these two approaches on a variety of examples with different types of stationary points and also a simple engineering problem with phase changes.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-023-09794-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bifurcations ; Control ; Engineering ; Environmental Management ; Financial Engineering ; Mathematical analysis ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Research Article ; Systems Theory</subject><ispartof>Optimization and engineering, 2023-12, Vol.24 (4), p.2795-2826</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-9d8e1e883f9102dbd8770ab74d8bda2b23be6f99e308c3a56f489083ccc14c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-023-09794-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-023-09794-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kungurtsev, Vyacheslav</creatorcontrib><creatorcontrib>Jäschke, Johannes</creatorcontrib><title>Pathfollowing for parametric mathematical programs with complementarity constraints</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>In this paper we study procedures for pathfollowing parametric mathematical programs with complementarity constraints. We present two algorithms, one based on the penalty approach for solving standalone MPCCs, and one based on tracing active set bifurcations arising from doubly-active complementarity constraints. We demonstrate the performance of these two approaches on a variety of examples with different types of stationary points and also a simple engineering problem with phase changes.</description><subject>Algorithms</subject><subject>Bifurcations</subject><subject>Control</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Research Article</subject><subject>Systems Theory</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtKAzEUDaJgrf6AqwHX0bw6SZZSfIGgoK5DJpO0KTOTMUkp7dcbHcGdm_vgPO7lAHCJ0TVGiN8kjJHAEBEKkeSSwcMRmOEFp5BIwo7LTIWEjBF0Cs5S2iCE6wURM_D2qvPaha4LOz-sKhdiNeqoe5ujN1VfQFuKN7qrxhhWBUnVzud1ZUI_dra3Q9bR533Zh5Sj9kNO5-DE6S7Zi98-Bx_3d-_LR_j88vC0vH2GhmKWoWyFxVYI6iRGpG1awTnSDWetaFpNGkIbWzspLUXCUL2oHRMSCWqMwcxQR-fgavItn31ubcpqE7ZxKCcVEZxJXtdYFhaZWCaGlKJ1aoy-13GvMFLf4akpPFXCUz_hqUMR0UmUCnlY2fhn_Y_qC2VydSQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kungurtsev, Vyacheslav</creator><creator>Jäschke, Johannes</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20231201</creationdate><title>Pathfollowing for parametric mathematical programs with complementarity constraints</title><author>Kungurtsev, Vyacheslav ; Jäschke, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9d8e1e883f9102dbd8770ab74d8bda2b23be6f99e308c3a56f489083ccc14c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bifurcations</topic><topic>Control</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Research Article</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kungurtsev, Vyacheslav</creatorcontrib><creatorcontrib>Jäschke, Johannes</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kungurtsev, Vyacheslav</au><au>Jäschke, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathfollowing for parametric mathematical programs with complementarity constraints</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>2795</spage><epage>2826</epage><pages>2795-2826</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>In this paper we study procedures for pathfollowing parametric mathematical programs with complementarity constraints. We present two algorithms, one based on the penalty approach for solving standalone MPCCs, and one based on tracing active set bifurcations arising from doubly-active complementarity constraints. We demonstrate the performance of these two approaches on a variety of examples with different types of stationary points and also a simple engineering problem with phase changes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-023-09794-z</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-4420 |
ispartof | Optimization and engineering, 2023-12, Vol.24 (4), p.2795-2826 |
issn | 1389-4420 1573-2924 |
language | eng |
recordid | cdi_proquest_journals_2874976619 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Bifurcations Control Engineering Environmental Management Financial Engineering Mathematical analysis Mathematical programming Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Research Article Systems Theory |
title | Pathfollowing for parametric mathematical programs with complementarity constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathfollowing%20for%20parametric%20mathematical%20programs%20with%20complementarity%20constraints&rft.jtitle=Optimization%20and%20engineering&rft.au=Kungurtsev,%20Vyacheslav&rft.date=2023-12-01&rft.volume=24&rft.issue=4&rft.spage=2795&rft.epage=2826&rft.pages=2795-2826&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-023-09794-z&rft_dat=%3Cproquest_cross%3E2874976619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874976619&rft_id=info:pmid/&rfr_iscdi=true |