Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance
Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2023-10, Vol.23 (2), p.4413-4421 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4421 |
---|---|
container_issue | 2 |
container_start_page | 4413 |
container_title | Lab on a chip |
container_volume | 23 |
creator | Gao, Xiaoqi Hu, Xuejia Yang, Dongyong Hu, Qinghao Zheng, Jingjing Zhao, Shukun Zhu, Chengliang Xiao, Xuan Yang, Yi |
description | Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
Cellular arrangements with diverse patterns and positional relationships are obtained simultaneously and contactlessly by quasi-periodic acoustic tweezers for differentiation guidance. |
doi_str_mv | 10.1039/d3lc00448a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874847347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870993807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-fc8b3cc1c88011c61963720f5527a1fd8fff837fed303adc9c93be7dfc6a88e3</originalsourceid><addsrcrecordid>eNpd0d9LwzAQB_AgCs7pi-9CwBcRqsnStcnjmD9h4MveS3q5jIy22ZJW8L83dTLBp8vBh3D3PUKuOXvgTKhHIxpgLM-lPiETnpciY1yq0-NblefkIsYtY3yeF3JCcAF-iL0Duh90dNkOg_MmtbXzOkZs6-aL1jqiocZ9YohIY48tBWwaqkPQ3QZb7PpIrQ-JWIshtU73znd0MzijO8BLcmZ1E_Hqt07J-uV5vXzLVh-v78vFKgPB8z6zIGsBwEFKxjkUXBWinDE7n89Kza2R1lopSotGMKENKFCixtJYKLSUKKbk7vDtLvj9gLGvWhfHSXWHactqJkumlJCsTPT2H936IXRpuFHlMsWVj-r-oCD4GAPaahdcq8NXxVk1Bl49idXyJ_BFwjcHHCIc3d9BxDfim38D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874847347</pqid></control><display><type>article</type><title>Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Gao, Xiaoqi ; Hu, Xuejia ; Yang, Dongyong ; Hu, Qinghao ; Zheng, Jingjing ; Zhao, Shukun ; Zhu, Chengliang ; Xiao, Xuan ; Yang, Yi</creator><creatorcontrib>Gao, Xiaoqi ; Hu, Xuejia ; Yang, Dongyong ; Hu, Qinghao ; Zheng, Jingjing ; Zhao, Shukun ; Zhu, Chengliang ; Xiao, Xuan ; Yang, Yi</creatorcontrib><description>Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
Cellular arrangements with diverse patterns and positional relationships are obtained simultaneously and contactlessly by quasi-periodic acoustic tweezers for differentiation guidance.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d3lc00448a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acoustics ; Differentiation (biology) ; Modulation ; Patterning ; Sound fields ; Stem cells ; Tissue engineering</subject><ispartof>Lab on a chip, 2023-10, Vol.23 (2), p.4413-4421</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-fc8b3cc1c88011c61963720f5527a1fd8fff837fed303adc9c93be7dfc6a88e3</citedby><cites>FETCH-LOGICAL-c314t-fc8b3cc1c88011c61963720f5527a1fd8fff837fed303adc9c93be7dfc6a88e3</cites><orcidid>0009-0007-4711-6093 ; 0000-0003-0693-9193 ; 0000-0001-8891-2140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Xiaoqi</creatorcontrib><creatorcontrib>Hu, Xuejia</creatorcontrib><creatorcontrib>Yang, Dongyong</creatorcontrib><creatorcontrib>Hu, Qinghao</creatorcontrib><creatorcontrib>Zheng, Jingjing</creatorcontrib><creatorcontrib>Zhao, Shukun</creatorcontrib><creatorcontrib>Zhu, Chengliang</creatorcontrib><creatorcontrib>Xiao, Xuan</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><title>Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance</title><title>Lab on a chip</title><description>Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
Cellular arrangements with diverse patterns and positional relationships are obtained simultaneously and contactlessly by quasi-periodic acoustic tweezers for differentiation guidance.</description><subject>Acoustics</subject><subject>Differentiation (biology)</subject><subject>Modulation</subject><subject>Patterning</subject><subject>Sound fields</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LwzAQB_AgCs7pi-9CwBcRqsnStcnjmD9h4MveS3q5jIy22ZJW8L83dTLBp8vBh3D3PUKuOXvgTKhHIxpgLM-lPiETnpciY1yq0-NblefkIsYtY3yeF3JCcAF-iL0Duh90dNkOg_MmtbXzOkZs6-aL1jqiocZ9YohIY48tBWwaqkPQ3QZb7PpIrQ-JWIshtU73znd0MzijO8BLcmZ1E_Hqt07J-uV5vXzLVh-v78vFKgPB8z6zIGsBwEFKxjkUXBWinDE7n89Kza2R1lopSotGMKENKFCixtJYKLSUKKbk7vDtLvj9gLGvWhfHSXWHactqJkumlJCsTPT2H936IXRpuFHlMsWVj-r-oCD4GAPaahdcq8NXxVk1Bl49idXyJ_BFwjcHHCIc3d9BxDfim38D</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Gao, Xiaoqi</creator><creator>Hu, Xuejia</creator><creator>Yang, Dongyong</creator><creator>Hu, Qinghao</creator><creator>Zheng, Jingjing</creator><creator>Zhao, Shukun</creator><creator>Zhu, Chengliang</creator><creator>Xiao, Xuan</creator><creator>Yang, Yi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-4711-6093</orcidid><orcidid>https://orcid.org/0000-0003-0693-9193</orcidid><orcidid>https://orcid.org/0000-0001-8891-2140</orcidid></search><sort><creationdate>20231010</creationdate><title>Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance</title><author>Gao, Xiaoqi ; Hu, Xuejia ; Yang, Dongyong ; Hu, Qinghao ; Zheng, Jingjing ; Zhao, Shukun ; Zhu, Chengliang ; Xiao, Xuan ; Yang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-fc8b3cc1c88011c61963720f5527a1fd8fff837fed303adc9c93be7dfc6a88e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Differentiation (biology)</topic><topic>Modulation</topic><topic>Patterning</topic><topic>Sound fields</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xiaoqi</creatorcontrib><creatorcontrib>Hu, Xuejia</creatorcontrib><creatorcontrib>Yang, Dongyong</creatorcontrib><creatorcontrib>Hu, Qinghao</creatorcontrib><creatorcontrib>Zheng, Jingjing</creatorcontrib><creatorcontrib>Zhao, Shukun</creatorcontrib><creatorcontrib>Zhu, Chengliang</creatorcontrib><creatorcontrib>Xiao, Xuan</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xiaoqi</au><au>Hu, Xuejia</au><au>Yang, Dongyong</au><au>Hu, Qinghao</au><au>Zheng, Jingjing</au><au>Zhao, Shukun</au><au>Zhu, Chengliang</au><au>Xiao, Xuan</au><au>Yang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance</atitle><jtitle>Lab on a chip</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>23</volume><issue>2</issue><spage>4413</spage><epage>4421</epage><pages>4413-4421</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
Cellular arrangements with diverse patterns and positional relationships are obtained simultaneously and contactlessly by quasi-periodic acoustic tweezers for differentiation guidance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3lc00448a</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0007-4711-6093</orcidid><orcidid>https://orcid.org/0000-0003-0693-9193</orcidid><orcidid>https://orcid.org/0000-0001-8891-2140</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2023-10, Vol.23 (2), p.4413-4421 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_journals_2874847347 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Acoustics Differentiation (biology) Modulation Patterning Sound fields Stem cells Tissue engineering |
title | Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20quasi-periodic%20bioassembly%20based%20diverse%20stem%20cell%20arrangements%20for%20differentiation%20guidance&rft.jtitle=Lab%20on%20a%20chip&rft.au=Gao,%20Xiaoqi&rft.date=2023-10-10&rft.volume=23&rft.issue=2&rft.spage=4413&rft.epage=4421&rft.pages=4413-4421&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d3lc00448a&rft_dat=%3Cproquest_cross%3E2870993807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874847347&rft_id=info:pmid/&rfr_iscdi=true |