Discovery of Nanoscale Electric Field‐Induced Phase Transitions in ZrO2

The emergence of ferroelectric and antiferroelectric properties in the semiconductor industry's most prominent high‐k dielectrics, HfO2 and ZrO2, is leading to technology developments unanticipated a decade ago. Yet the failure to clearly distinguish ferroelectric from antiferroelectric behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-10, Vol.33 (41)
Hauptverfasser: Lomenzo, Patrick D, Collins, Liam, Ganser, Richard, Bohan Xu, Guido, Roberto, Gruverman, Alexei, Kersch, Alfred, Mikolajick, Thomas, Schroeder, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emergence of ferroelectric and antiferroelectric properties in the semiconductor industry's most prominent high‐k dielectrics, HfO2 and ZrO2, is leading to technology developments unanticipated a decade ago. Yet the failure to clearly distinguish ferroelectric from antiferroelectric behavior is impeding progress. Band‐excitation piezoresponse force microscopy and molecular dynamics are used to elucidate the nanoscale electric field‐induced phase transitions present in ZrO2‐based antiferroelectrics. Antiferroelectric ZrO2 is clearly distinguished from a closely resembling pinched La‐doped HfO2 ferroelectric. Crystalline grains in the range of 3 – 20 nm are imaged independently undergoing reversible electric field induced phase transitions. The electrically accessible nanoscale phase transitions discovered in this study open up an unprecedented paradigm for the development of new nanoelectronic devices.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202303636