Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics
Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losi...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-10, Vol.33 (41) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 41 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Long, Yong Jiang, Bing Huang, Tianci Liu, Yuxiu Niu, Jianan Wang, Zhong Lin Hu, Weiguo |
description | Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self‐polymerization reaction is involved, which is super stretchable, anti‐drying, and anti‐freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high‐performance triboelectric nanogenerator (TENG) is constructed (MOIC‐TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human‐machine interfaces. |
doi_str_mv | 10.1002/adfm.202304625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874672380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874672380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-52373627f20db876097f01e8788d3b270c8fd1ac4f8b43ea6679b801b4d746183</originalsourceid><addsrcrecordid>eNo9kM1OAjEUhRujiYhuXU_i1sHbdmjLkiAoCYQFmrhrZvqDQ4YptjMJuPIRfEafxCKGxc299-TLOclB6BZDDwOQh1zbTY8AoZAx0j9DHcwwSykQcX668dslugphDYA5p1kHhWW7Nf7n63vZeNOo97yozH0yrJsyahNvzGdZr07Co9_HN1n4VV67lamSqatLlYxcrVvVOJ_YOPO2-oPnTptkUpldGT2TcWVU4w94uEYXNq-CufnfXfQ6Gb-MntPZ4mk6Gs5SRRhv0j6hnDLCLQFdCM5gwC1gI7gQmhaEgxJW41xlVhQZNTljfFAIwEWmecawoF10d_TdevfRmtDItWt9HSMlERHhhAqIVO9IKe9C8MbKrS83ud9LDPJQrDwUK0_F0l9-h2_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874672380</pqid></control><display><type>article</type><title>Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Long, Yong ; Jiang, Bing ; Huang, Tianci ; Liu, Yuxiu ; Niu, Jianan ; Wang, Zhong Lin ; Hu, Weiguo</creator><creatorcontrib>Long, Yong ; Jiang, Bing ; Huang, Tianci ; Liu, Yuxiu ; Niu, Jianan ; Wang, Zhong Lin ; Hu, Weiguo</creatorcontrib><description>Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self‐polymerization reaction is involved, which is super stretchable, anti‐drying, and anti‐freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high‐performance triboelectric nanogenerator (TENG) is constructed (MOIC‐TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human‐machine interfaces.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202304625</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Conductors ; Drying ; Electronics ; Energy harvesting ; Flexibility ; Flexible components ; Freezing ; Hydrogels ; Low temperature ; Materials science ; Materials selection ; Nanogenerators ; Sensors ; Strain ; Tactile sensors (robotics) ; Triboelectric effect ; Water loss ; Wearable technology</subject><ispartof>Advanced functional materials, 2023-10, Vol.33 (41)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-52373627f20db876097f01e8788d3b270c8fd1ac4f8b43ea6679b801b4d746183</citedby><cites>FETCH-LOGICAL-c267t-52373627f20db876097f01e8788d3b270c8fd1ac4f8b43ea6679b801b4d746183</cites><orcidid>0000-0002-8614-0359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Long, Yong</creatorcontrib><creatorcontrib>Jiang, Bing</creatorcontrib><creatorcontrib>Huang, Tianci</creatorcontrib><creatorcontrib>Liu, Yuxiu</creatorcontrib><creatorcontrib>Niu, Jianan</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Hu, Weiguo</creatorcontrib><title>Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics</title><title>Advanced functional materials</title><description>Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self‐polymerization reaction is involved, which is super stretchable, anti‐drying, and anti‐freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high‐performance triboelectric nanogenerator (TENG) is constructed (MOIC‐TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human‐machine interfaces.</description><subject>Conductors</subject><subject>Drying</subject><subject>Electronics</subject><subject>Energy harvesting</subject><subject>Flexibility</subject><subject>Flexible components</subject><subject>Freezing</subject><subject>Hydrogels</subject><subject>Low temperature</subject><subject>Materials science</subject><subject>Materials selection</subject><subject>Nanogenerators</subject><subject>Sensors</subject><subject>Strain</subject><subject>Tactile sensors (robotics)</subject><subject>Triboelectric effect</subject><subject>Water loss</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OAjEUhRujiYhuXU_i1sHbdmjLkiAoCYQFmrhrZvqDQ4YptjMJuPIRfEafxCKGxc299-TLOclB6BZDDwOQh1zbTY8AoZAx0j9DHcwwSykQcX668dslugphDYA5p1kHhWW7Nf7n63vZeNOo97yozH0yrJsyahNvzGdZr07Co9_HN1n4VV67lamSqatLlYxcrVvVOJ_YOPO2-oPnTptkUpldGT2TcWVU4w94uEYXNq-CufnfXfQ6Gb-MntPZ4mk6Gs5SRRhv0j6hnDLCLQFdCM5gwC1gI7gQmhaEgxJW41xlVhQZNTljfFAIwEWmecawoF10d_TdevfRmtDItWt9HSMlERHhhAqIVO9IKe9C8MbKrS83ud9LDPJQrDwUK0_F0l9-h2_I</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Long, Yong</creator><creator>Jiang, Bing</creator><creator>Huang, Tianci</creator><creator>Liu, Yuxiu</creator><creator>Niu, Jianan</creator><creator>Wang, Zhong Lin</creator><creator>Hu, Weiguo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8614-0359</orcidid></search><sort><creationdate>20231001</creationdate><title>Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics</title><author>Long, Yong ; Jiang, Bing ; Huang, Tianci ; Liu, Yuxiu ; Niu, Jianan ; Wang, Zhong Lin ; Hu, Weiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-52373627f20db876097f01e8788d3b270c8fd1ac4f8b43ea6679b801b4d746183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conductors</topic><topic>Drying</topic><topic>Electronics</topic><topic>Energy harvesting</topic><topic>Flexibility</topic><topic>Flexible components</topic><topic>Freezing</topic><topic>Hydrogels</topic><topic>Low temperature</topic><topic>Materials science</topic><topic>Materials selection</topic><topic>Nanogenerators</topic><topic>Sensors</topic><topic>Strain</topic><topic>Tactile sensors (robotics)</topic><topic>Triboelectric effect</topic><topic>Water loss</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Yong</creatorcontrib><creatorcontrib>Jiang, Bing</creatorcontrib><creatorcontrib>Huang, Tianci</creatorcontrib><creatorcontrib>Liu, Yuxiu</creatorcontrib><creatorcontrib>Niu, Jianan</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Hu, Weiguo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Yong</au><au>Jiang, Bing</au><au>Huang, Tianci</au><au>Liu, Yuxiu</au><au>Niu, Jianan</au><au>Wang, Zhong Lin</au><au>Hu, Weiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics</atitle><jtitle>Advanced functional materials</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>41</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self‐polymerization reaction is involved, which is super stretchable, anti‐drying, and anti‐freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high‐performance triboelectric nanogenerator (TENG) is constructed (MOIC‐TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human‐machine interfaces.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202304625</doi><orcidid>https://orcid.org/0000-0002-8614-0359</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-10, Vol.33 (41) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2874672380 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Conductors Drying Electronics Energy harvesting Flexibility Flexible components Freezing Hydrogels Low temperature Materials science Materials selection Nanogenerators Sensors Strain Tactile sensors (robotics) Triboelectric effect Water loss Wearable technology |
title | Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%E2%80%90Stretchable,%20Anti%E2%80%90Freezing,%20Anti%E2%80%90Drying%20Organogel%20Ionic%20Conductor%20for%20Multi%E2%80%90Mode%20Flexible%20Electronics&rft.jtitle=Advanced%20functional%20materials&rft.au=Long,%20Yong&rft.date=2023-10-01&rft.volume=33&rft.issue=41&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202304625&rft_dat=%3Cproquest_cross%3E2874672380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874672380&rft_id=info:pmid/&rfr_iscdi=true |