Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics

Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-10, Vol.33 (41)
Hauptverfasser: Long, Yong, Jiang, Bing, Huang, Tianci, Liu, Yuxiu, Niu, Jianan, Wang, Zhong Lin, Hu, Weiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 41
container_start_page
container_title Advanced functional materials
container_volume 33
creator Long, Yong
Jiang, Bing
Huang, Tianci
Liu, Yuxiu
Niu, Jianan
Wang, Zhong Lin
Hu, Weiguo
description Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self‐polymerization reaction is involved, which is super stretchable, anti‐drying, and anti‐freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high‐performance triboelectric nanogenerator (TENG) is constructed (MOIC‐TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human‐machine interfaces.
doi_str_mv 10.1002/adfm.202304625
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874672380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874672380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-52373627f20db876097f01e8788d3b270c8fd1ac4f8b43ea6679b801b4d746183</originalsourceid><addsrcrecordid>eNo9kM1OAjEUhRujiYhuXU_i1sHbdmjLkiAoCYQFmrhrZvqDQ4YptjMJuPIRfEafxCKGxc299-TLOclB6BZDDwOQh1zbTY8AoZAx0j9DHcwwSykQcX668dslugphDYA5p1kHhWW7Nf7n63vZeNOo97yozH0yrJsyahNvzGdZr07Co9_HN1n4VV67lamSqatLlYxcrVvVOJ_YOPO2-oPnTptkUpldGT2TcWVU4w94uEYXNq-CufnfXfQ6Gb-MntPZ4mk6Gs5SRRhv0j6hnDLCLQFdCM5gwC1gI7gQmhaEgxJW41xlVhQZNTljfFAIwEWmecawoF10d_TdevfRmtDItWt9HSMlERHhhAqIVO9IKe9C8MbKrS83ud9LDPJQrDwUK0_F0l9-h2_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874672380</pqid></control><display><type>article</type><title>Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Long, Yong ; Jiang, Bing ; Huang, Tianci ; Liu, Yuxiu ; Niu, Jianan ; Wang, Zhong Lin ; Hu, Weiguo</creator><creatorcontrib>Long, Yong ; Jiang, Bing ; Huang, Tianci ; Liu, Yuxiu ; Niu, Jianan ; Wang, Zhong Lin ; Hu, Weiguo</creatorcontrib><description>Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self‐polymerization reaction is involved, which is super stretchable, anti‐drying, and anti‐freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high‐performance triboelectric nanogenerator (TENG) is constructed (MOIC‐TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human‐machine interfaces.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202304625</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Conductors ; Drying ; Electronics ; Energy harvesting ; Flexibility ; Flexible components ; Freezing ; Hydrogels ; Low temperature ; Materials science ; Materials selection ; Nanogenerators ; Sensors ; Strain ; Tactile sensors (robotics) ; Triboelectric effect ; Water loss ; Wearable technology</subject><ispartof>Advanced functional materials, 2023-10, Vol.33 (41)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-52373627f20db876097f01e8788d3b270c8fd1ac4f8b43ea6679b801b4d746183</citedby><cites>FETCH-LOGICAL-c267t-52373627f20db876097f01e8788d3b270c8fd1ac4f8b43ea6679b801b4d746183</cites><orcidid>0000-0002-8614-0359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Long, Yong</creatorcontrib><creatorcontrib>Jiang, Bing</creatorcontrib><creatorcontrib>Huang, Tianci</creatorcontrib><creatorcontrib>Liu, Yuxiu</creatorcontrib><creatorcontrib>Niu, Jianan</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Hu, Weiguo</creatorcontrib><title>Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics</title><title>Advanced functional materials</title><description>Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self‐polymerization reaction is involved, which is super stretchable, anti‐drying, and anti‐freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high‐performance triboelectric nanogenerator (TENG) is constructed (MOIC‐TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human‐machine interfaces.</description><subject>Conductors</subject><subject>Drying</subject><subject>Electronics</subject><subject>Energy harvesting</subject><subject>Flexibility</subject><subject>Flexible components</subject><subject>Freezing</subject><subject>Hydrogels</subject><subject>Low temperature</subject><subject>Materials science</subject><subject>Materials selection</subject><subject>Nanogenerators</subject><subject>Sensors</subject><subject>Strain</subject><subject>Tactile sensors (robotics)</subject><subject>Triboelectric effect</subject><subject>Water loss</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OAjEUhRujiYhuXU_i1sHbdmjLkiAoCYQFmrhrZvqDQ4YptjMJuPIRfEafxCKGxc299-TLOclB6BZDDwOQh1zbTY8AoZAx0j9DHcwwSykQcX668dslugphDYA5p1kHhWW7Nf7n63vZeNOo97yozH0yrJsyahNvzGdZr07Co9_HN1n4VV67lamSqatLlYxcrVvVOJ_YOPO2-oPnTptkUpldGT2TcWVU4w94uEYXNq-CufnfXfQ6Gb-MntPZ4mk6Gs5SRRhv0j6hnDLCLQFdCM5gwC1gI7gQmhaEgxJW41xlVhQZNTljfFAIwEWmecawoF10d_TdevfRmtDItWt9HSMlERHhhAqIVO9IKe9C8MbKrS83ud9LDPJQrDwUK0_F0l9-h2_I</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Long, Yong</creator><creator>Jiang, Bing</creator><creator>Huang, Tianci</creator><creator>Liu, Yuxiu</creator><creator>Niu, Jianan</creator><creator>Wang, Zhong Lin</creator><creator>Hu, Weiguo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8614-0359</orcidid></search><sort><creationdate>20231001</creationdate><title>Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics</title><author>Long, Yong ; Jiang, Bing ; Huang, Tianci ; Liu, Yuxiu ; Niu, Jianan ; Wang, Zhong Lin ; Hu, Weiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-52373627f20db876097f01e8788d3b270c8fd1ac4f8b43ea6679b801b4d746183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conductors</topic><topic>Drying</topic><topic>Electronics</topic><topic>Energy harvesting</topic><topic>Flexibility</topic><topic>Flexible components</topic><topic>Freezing</topic><topic>Hydrogels</topic><topic>Low temperature</topic><topic>Materials science</topic><topic>Materials selection</topic><topic>Nanogenerators</topic><topic>Sensors</topic><topic>Strain</topic><topic>Tactile sensors (robotics)</topic><topic>Triboelectric effect</topic><topic>Water loss</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Yong</creatorcontrib><creatorcontrib>Jiang, Bing</creatorcontrib><creatorcontrib>Huang, Tianci</creatorcontrib><creatorcontrib>Liu, Yuxiu</creatorcontrib><creatorcontrib>Niu, Jianan</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Hu, Weiguo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Yong</au><au>Jiang, Bing</au><au>Huang, Tianci</au><au>Liu, Yuxiu</au><au>Niu, Jianan</au><au>Wang, Zhong Lin</au><au>Hu, Weiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics</atitle><jtitle>Advanced functional materials</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>41</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Due to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self‐polymerization reaction is involved, which is super stretchable, anti‐drying, and anti‐freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high‐performance triboelectric nanogenerator (TENG) is constructed (MOIC‐TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human‐machine interfaces.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202304625</doi><orcidid>https://orcid.org/0000-0002-8614-0359</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-10, Vol.33 (41)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2874672380
source Wiley Online Library Journals Frontfile Complete
subjects Conductors
Drying
Electronics
Energy harvesting
Flexibility
Flexible components
Freezing
Hydrogels
Low temperature
Materials science
Materials selection
Nanogenerators
Sensors
Strain
Tactile sensors (robotics)
Triboelectric effect
Water loss
Wearable technology
title Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%E2%80%90Stretchable,%20Anti%E2%80%90Freezing,%20Anti%E2%80%90Drying%20Organogel%20Ionic%20Conductor%20for%20Multi%E2%80%90Mode%20Flexible%20Electronics&rft.jtitle=Advanced%20functional%20materials&rft.au=Long,%20Yong&rft.date=2023-10-01&rft.volume=33&rft.issue=41&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202304625&rft_dat=%3Cproquest_cross%3E2874672380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874672380&rft_id=info:pmid/&rfr_iscdi=true