Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole
Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐en...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Mechanik 2023-10, Vol.103 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 103 |
creator | B, Nagaraja AR, Ajaykumar A, Felicita Kumar, Pradeep NG, Rudraswamy |
description | Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations. The Runge‐Kutta‐Fehlberg (RKF) 4–5th order tool has been used to draw solution graphs. Each graph has been analyzed in depth and commented on. The research shows that the inverse Darcy parameter and the suction/injection parameter have a detrimental effect on velocity distribution. In addition, the investigation showed that the nonlinear radiation parameter and the melting parameter had contradictory effects on the thermal profile. As a value addition, the flow and temperature distribution have been shown graphically using streamlines and isotherms. Therefore, considered flow over curved geometry is very new with cutting‐edge results which are useful in further research in the field.
Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations.… |
doi_str_mv | 10.1002/zamm.202300134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874637406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874637406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-188972a290b6283497456a690320725cf50c67bdc0430a0fec95622b4f37758c3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5WyJc8r6J3FyrAoFpBYuICQukes4jaskLnZKVU59BJ6RJ8GlCI6cVjP7za40CJ0TGBAAevkum2ZAgTIAwvgB6pGYkogHdYh6AJxHlCbiGJ14v4DgZoT10Pbetp_bjyvp1CbMsXWqqrRptMNlbdfYlngkvf-Gnk1dG9kEgVvZ2rJemQIH0ei6M-0cq5V70wX2ndOdqnaOr7TusGkDqlsVdrMNbuS81Z1RuDBLW-tTdFTK2uuzn9lHT-Prx9FtNHm4uRsNJ5FiRPCIpGkmqKQZzBKaMp4JHicyyYBREDRWZQwqEbNCAWcgodQqixNKZ7xkQsSpYn10sb-7dPZ1pX2XL-zKteFlTlPBEyY4JIEa7CnlrPdOl_nSmUa6TU4g37Wc71rOf1sOgWwfWJtab_6h85fhdPqX_QI8A4Tl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874637406</pqid></control><display><type>article</type><title>Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>B, Nagaraja ; AR, Ajaykumar ; A, Felicita ; Kumar, Pradeep ; NG, Rudraswamy</creator><creatorcontrib>B, Nagaraja ; AR, Ajaykumar ; A, Felicita ; Kumar, Pradeep ; NG, Rudraswamy</creatorcontrib><description>Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations. The Runge‐Kutta‐Fehlberg (RKF) 4–5th order tool has been used to draw solution graphs. Each graph has been analyzed in depth and commented on. The research shows that the inverse Darcy parameter and the suction/injection parameter have a detrimental effect on velocity distribution. In addition, the investigation showed that the nonlinear radiation parameter and the melting parameter had contradictory effects on the thermal profile. As a value addition, the flow and temperature distribution have been shown graphically using streamlines and isotherms. Therefore, considered flow over curved geometry is very new with cutting‐edge results which are useful in further research in the field.
Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations.…</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202300134</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Fluid flow ; Magnetic dipoles ; Melting ; Nanofluids ; Ohmic dissipation ; Ordinary differential equations ; Parameters ; Partial differential equations ; Radiation ; Resistance heating ; Stretching ; Suction ; Temperature distribution ; Thermal radiation ; Velocity distribution</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2023-10, Vol.103 (10), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-188972a290b6283497456a690320725cf50c67bdc0430a0fec95622b4f37758c3</citedby><cites>FETCH-LOGICAL-c3174-188972a290b6283497456a690320725cf50c67bdc0430a0fec95622b4f37758c3</cites><orcidid>0000-0002-4875-5387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.202300134$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.202300134$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>B, Nagaraja</creatorcontrib><creatorcontrib>AR, Ajaykumar</creatorcontrib><creatorcontrib>A, Felicita</creatorcontrib><creatorcontrib>Kumar, Pradeep</creatorcontrib><creatorcontrib>NG, Rudraswamy</creatorcontrib><title>Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations. The Runge‐Kutta‐Fehlberg (RKF) 4–5th order tool has been used to draw solution graphs. Each graph has been analyzed in depth and commented on. The research shows that the inverse Darcy parameter and the suction/injection parameter have a detrimental effect on velocity distribution. In addition, the investigation showed that the nonlinear radiation parameter and the melting parameter had contradictory effects on the thermal profile. As a value addition, the flow and temperature distribution have been shown graphically using streamlines and isotherms. Therefore, considered flow over curved geometry is very new with cutting‐edge results which are useful in further research in the field.
Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations.…</description><subject>Fluid flow</subject><subject>Magnetic dipoles</subject><subject>Melting</subject><subject>Nanofluids</subject><subject>Ohmic dissipation</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Radiation</subject><subject>Resistance heating</subject><subject>Stretching</subject><subject>Suction</subject><subject>Temperature distribution</subject><subject>Thermal radiation</subject><subject>Velocity distribution</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqVw5WyJc8r6J3FyrAoFpBYuICQukes4jaskLnZKVU59BJ6RJ8GlCI6cVjP7za40CJ0TGBAAevkum2ZAgTIAwvgB6pGYkogHdYh6AJxHlCbiGJ14v4DgZoT10Pbetp_bjyvp1CbMsXWqqrRptMNlbdfYlngkvf-Gnk1dG9kEgVvZ2rJemQIH0ei6M-0cq5V70wX2ndOdqnaOr7TusGkDqlsVdrMNbuS81Z1RuDBLW-tTdFTK2uuzn9lHT-Prx9FtNHm4uRsNJ5FiRPCIpGkmqKQZzBKaMp4JHicyyYBREDRWZQwqEbNCAWcgodQqixNKZ7xkQsSpYn10sb-7dPZ1pX2XL-zKteFlTlPBEyY4JIEa7CnlrPdOl_nSmUa6TU4g37Wc71rOf1sOgWwfWJtab_6h85fhdPqX_QI8A4Tl</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>B, Nagaraja</creator><creator>AR, Ajaykumar</creator><creator>A, Felicita</creator><creator>Kumar, Pradeep</creator><creator>NG, Rudraswamy</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4875-5387</orcidid></search><sort><creationdate>202310</creationdate><title>Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole</title><author>B, Nagaraja ; AR, Ajaykumar ; A, Felicita ; Kumar, Pradeep ; NG, Rudraswamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-188972a290b6283497456a690320725cf50c67bdc0430a0fec95622b4f37758c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fluid flow</topic><topic>Magnetic dipoles</topic><topic>Melting</topic><topic>Nanofluids</topic><topic>Ohmic dissipation</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Radiation</topic><topic>Resistance heating</topic><topic>Stretching</topic><topic>Suction</topic><topic>Temperature distribution</topic><topic>Thermal radiation</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>B, Nagaraja</creatorcontrib><creatorcontrib>AR, Ajaykumar</creatorcontrib><creatorcontrib>A, Felicita</creatorcontrib><creatorcontrib>Kumar, Pradeep</creatorcontrib><creatorcontrib>NG, Rudraswamy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>B, Nagaraja</au><au>AR, Ajaykumar</au><au>A, Felicita</au><au>Kumar, Pradeep</au><au>NG, Rudraswamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2023-10</date><risdate>2023</risdate><volume>103</volume><issue>10</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations. The Runge‐Kutta‐Fehlberg (RKF) 4–5th order tool has been used to draw solution graphs. Each graph has been analyzed in depth and commented on. The research shows that the inverse Darcy parameter and the suction/injection parameter have a detrimental effect on velocity distribution. In addition, the investigation showed that the nonlinear radiation parameter and the melting parameter had contradictory effects on the thermal profile. As a value addition, the flow and temperature distribution have been shown graphically using streamlines and isotherms. Therefore, considered flow over curved geometry is very new with cutting‐edge results which are useful in further research in the field.
Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations.…</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202300134</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4875-5387</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2023-10, Vol.103 (10), p.n/a |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_journals_2874637406 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Fluid flow Magnetic dipoles Melting Nanofluids Ohmic dissipation Ordinary differential equations Parameters Partial differential equations Radiation Resistance heating Stretching Suction Temperature distribution Thermal radiation Velocity distribution |
title | Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Darcy%E2%80%90Forchheimer%20flow%20of%20Casson%E2%80%90Williamson%20nanofluid%20on%20melting%20curved%20stretching%20sheet%20influenced%20by%20magnetic%20dipole&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=B,%20Nagaraja&rft.date=2023-10&rft.volume=103&rft.issue=10&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202300134&rft_dat=%3Cproquest_cross%3E2874637406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874637406&rft_id=info:pmid/&rfr_iscdi=true |