Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole

Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2023-10, Vol.103 (10), p.n/a
Hauptverfasser: B, Nagaraja, AR, Ajaykumar, A, Felicita, Kumar, Pradeep, NG, Rudraswamy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 103
creator B, Nagaraja
AR, Ajaykumar
A, Felicita
Kumar, Pradeep
NG, Rudraswamy
description Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations. The Runge‐Kutta‐Fehlberg (RKF) 4–5th order tool has been used to draw solution graphs. Each graph has been analyzed in depth and commented on. The research shows that the inverse Darcy parameter and the suction/injection parameter have a detrimental effect on velocity distribution. In addition, the investigation showed that the nonlinear radiation parameter and the melting parameter had contradictory effects on the thermal profile. As a value addition, the flow and temperature distribution have been shown graphically using streamlines and isotherms. Therefore, considered flow over curved geometry is very new with cutting‐edge results which are useful in further research in the field. Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations.…
doi_str_mv 10.1002/zamm.202300134
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874637406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874637406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-188972a290b6283497456a690320725cf50c67bdc0430a0fec95622b4f37758c3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5WyJc8r6J3FyrAoFpBYuICQukes4jaskLnZKVU59BJ6RJ8GlCI6cVjP7za40CJ0TGBAAevkum2ZAgTIAwvgB6pGYkogHdYh6AJxHlCbiGJ14v4DgZoT10Pbetp_bjyvp1CbMsXWqqrRptMNlbdfYlngkvf-Gnk1dG9kEgVvZ2rJemQIH0ei6M-0cq5V70wX2ndOdqnaOr7TusGkDqlsVdrMNbuS81Z1RuDBLW-tTdFTK2uuzn9lHT-Prx9FtNHm4uRsNJ5FiRPCIpGkmqKQZzBKaMp4JHicyyYBREDRWZQwqEbNCAWcgodQqixNKZ7xkQsSpYn10sb-7dPZ1pX2XL-zKteFlTlPBEyY4JIEa7CnlrPdOl_nSmUa6TU4g37Wc71rOf1sOgWwfWJtab_6h85fhdPqX_QI8A4Tl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874637406</pqid></control><display><type>article</type><title>Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>B, Nagaraja ; AR, Ajaykumar ; A, Felicita ; Kumar, Pradeep ; NG, Rudraswamy</creator><creatorcontrib>B, Nagaraja ; AR, Ajaykumar ; A, Felicita ; Kumar, Pradeep ; NG, Rudraswamy</creatorcontrib><description>Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations. The Runge‐Kutta‐Fehlberg (RKF) 4–5th order tool has been used to draw solution graphs. Each graph has been analyzed in depth and commented on. The research shows that the inverse Darcy parameter and the suction/injection parameter have a detrimental effect on velocity distribution. In addition, the investigation showed that the nonlinear radiation parameter and the melting parameter had contradictory effects on the thermal profile. As a value addition, the flow and temperature distribution have been shown graphically using streamlines and isotherms. Therefore, considered flow over curved geometry is very new with cutting‐edge results which are useful in further research in the field. Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations.…</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202300134</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Fluid flow ; Magnetic dipoles ; Melting ; Nanofluids ; Ohmic dissipation ; Ordinary differential equations ; Parameters ; Partial differential equations ; Radiation ; Resistance heating ; Stretching ; Suction ; Temperature distribution ; Thermal radiation ; Velocity distribution</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2023-10, Vol.103 (10), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-188972a290b6283497456a690320725cf50c67bdc0430a0fec95622b4f37758c3</citedby><cites>FETCH-LOGICAL-c3174-188972a290b6283497456a690320725cf50c67bdc0430a0fec95622b4f37758c3</cites><orcidid>0000-0002-4875-5387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.202300134$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.202300134$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>B, Nagaraja</creatorcontrib><creatorcontrib>AR, Ajaykumar</creatorcontrib><creatorcontrib>A, Felicita</creatorcontrib><creatorcontrib>Kumar, Pradeep</creatorcontrib><creatorcontrib>NG, Rudraswamy</creatorcontrib><title>Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations. The Runge‐Kutta‐Fehlberg (RKF) 4–5th order tool has been used to draw solution graphs. Each graph has been analyzed in depth and commented on. The research shows that the inverse Darcy parameter and the suction/injection parameter have a detrimental effect on velocity distribution. In addition, the investigation showed that the nonlinear radiation parameter and the melting parameter had contradictory effects on the thermal profile. As a value addition, the flow and temperature distribution have been shown graphically using streamlines and isotherms. Therefore, considered flow over curved geometry is very new with cutting‐edge results which are useful in further research in the field. Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations.…</description><subject>Fluid flow</subject><subject>Magnetic dipoles</subject><subject>Melting</subject><subject>Nanofluids</subject><subject>Ohmic dissipation</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Radiation</subject><subject>Resistance heating</subject><subject>Stretching</subject><subject>Suction</subject><subject>Temperature distribution</subject><subject>Thermal radiation</subject><subject>Velocity distribution</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqVw5WyJc8r6J3FyrAoFpBYuICQukes4jaskLnZKVU59BJ6RJ8GlCI6cVjP7za40CJ0TGBAAevkum2ZAgTIAwvgB6pGYkogHdYh6AJxHlCbiGJ14v4DgZoT10Pbetp_bjyvp1CbMsXWqqrRptMNlbdfYlngkvf-Gnk1dG9kEgVvZ2rJemQIH0ei6M-0cq5V70wX2ndOdqnaOr7TusGkDqlsVdrMNbuS81Z1RuDBLW-tTdFTK2uuzn9lHT-Prx9FtNHm4uRsNJ5FiRPCIpGkmqKQZzBKaMp4JHicyyYBREDRWZQwqEbNCAWcgodQqixNKZ7xkQsSpYn10sb-7dPZ1pX2XL-zKteFlTlPBEyY4JIEa7CnlrPdOl_nSmUa6TU4g37Wc71rOf1sOgWwfWJtab_6h85fhdPqX_QI8A4Tl</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>B, Nagaraja</creator><creator>AR, Ajaykumar</creator><creator>A, Felicita</creator><creator>Kumar, Pradeep</creator><creator>NG, Rudraswamy</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4875-5387</orcidid></search><sort><creationdate>202310</creationdate><title>Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole</title><author>B, Nagaraja ; AR, Ajaykumar ; A, Felicita ; Kumar, Pradeep ; NG, Rudraswamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-188972a290b6283497456a690320725cf50c67bdc0430a0fec95622b4f37758c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fluid flow</topic><topic>Magnetic dipoles</topic><topic>Melting</topic><topic>Nanofluids</topic><topic>Ohmic dissipation</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Radiation</topic><topic>Resistance heating</topic><topic>Stretching</topic><topic>Suction</topic><topic>Temperature distribution</topic><topic>Thermal radiation</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>B, Nagaraja</creatorcontrib><creatorcontrib>AR, Ajaykumar</creatorcontrib><creatorcontrib>A, Felicita</creatorcontrib><creatorcontrib>Kumar, Pradeep</creatorcontrib><creatorcontrib>NG, Rudraswamy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>B, Nagaraja</au><au>AR, Ajaykumar</au><au>A, Felicita</au><au>Kumar, Pradeep</au><au>NG, Rudraswamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2023-10</date><risdate>2023</risdate><volume>103</volume><issue>10</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations. The Runge‐Kutta‐Fehlberg (RKF) 4–5th order tool has been used to draw solution graphs. Each graph has been analyzed in depth and commented on. The research shows that the inverse Darcy parameter and the suction/injection parameter have a detrimental effect on velocity distribution. In addition, the investigation showed that the nonlinear radiation parameter and the melting parameter had contradictory effects on the thermal profile. As a value addition, the flow and temperature distribution have been shown graphically using streamlines and isotherms. Therefore, considered flow over curved geometry is very new with cutting‐edge results which are useful in further research in the field. Using a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations.…</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202300134</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4875-5387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2023-10, Vol.103 (10), p.n/a
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_journals_2874637406
source Wiley Online Library Journals Frontfile Complete
subjects Fluid flow
Magnetic dipoles
Melting
Nanofluids
Ohmic dissipation
Ordinary differential equations
Parameters
Partial differential equations
Radiation
Resistance heating
Stretching
Suction
Temperature distribution
Thermal radiation
Velocity distribution
title Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Darcy%E2%80%90Forchheimer%20flow%20of%20Casson%E2%80%90Williamson%20nanofluid%20on%20melting%20curved%20stretching%20sheet%20influenced%20by%20magnetic%20dipole&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=B,%20Nagaraja&rft.date=2023-10&rft.volume=103&rft.issue=10&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202300134&rft_dat=%3Cproquest_cross%3E2874637406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874637406&rft_id=info:pmid/&rfr_iscdi=true