Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces
Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were inves...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Mechanik 2023-10, Vol.103 (10), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 103 |
creator | Huang, Yunzhi Zheng, Huayong Chen, Xiuhua Feng, Miaolin |
description | Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper. The governing equations of the model are derived via the variational principle and the generalized differential quadrature methods. Results reveal that the van der Waals force and the Casimir force reduce the pull‐in voltage and pull‐in phonon and phason displacements of QCs. Moreover, the pull‐in voltage increases with the reduction in phonon‐phason coupling elastic coefficients and the increment in phason elastic coefficients of QCs, indicating the considerable field‐dependence of nanostructures. Besides, the thermal correction of Casimir force and the surface residual tension have different effects on the displacements, and the micro‐mechanism of surface and small‐scale effects is discussed.
Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper.… |
doi_str_mv | 10.1002/zamm.202200268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874637350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874637350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2728-88c03ee8b23e27a0ac4627808093194af02aae5f4655f196699d6cf29a0737763</originalsourceid><addsrcrecordid>eNqFkL9OwzAQxi0EEqWwMltiTjnbiR2PVcWfSkUssLBErmOrrpKmtR1VYeIReEaeBFdFMLLc6e77fifdh9A1gQkBoLfvqm0nFChNAy9P0IgUlGQ5ADlFI4A8zyjl4hxdhLCGtJWEjZCZb0JUS9e4OGC1Uc0QXMCdxbteBaf9kNQGb9Sm-_r4DHsX9QqnusJxZXybJGOt0TGhNQ69t0obXLsQvVv20dTYdl6bcInOrGqCufrpY_R6f_cye8wWzw_z2XSRaSpomZWlBmZMuaTMUKFA6ZxTUUIJkhGZKwtUKVPYnBeFJZJzKWuuLZUKBBOCszG6Od7d-m7XmxCrddf79FWoaClyzgQrILkmR5f2XQje2GrrXav8UBGoDlFWhyir3ygTII_A3jVm-MddvU2fnv7Yb-DTehw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874637350</pqid></control><display><type>article</type><title>Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Yunzhi ; Zheng, Huayong ; Chen, Xiuhua ; Feng, Miaolin</creator><creatorcontrib>Huang, Yunzhi ; Zheng, Huayong ; Chen, Xiuhua ; Feng, Miaolin</creatorcontrib><description>Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper. The governing equations of the model are derived via the variational principle and the generalized differential quadrature methods. Results reveal that the van der Waals force and the Casimir force reduce the pull‐in voltage and pull‐in phonon and phason displacements of QCs. Moreover, the pull‐in voltage increases with the reduction in phonon‐phason coupling elastic coefficients and the increment in phason elastic coefficients of QCs, indicating the considerable field‐dependence of nanostructures. Besides, the thermal correction of Casimir force and the surface residual tension have different effects on the displacements, and the micro‐mechanism of surface and small‐scale effects is discussed.
Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper.…</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202200268</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Corrosion resistance ; Electric potential ; Generalized differential quadrature method ; Nanotechnology devices ; Nonlocal elasticity ; Phonons ; Quadratures ; Quasicrystals ; Stability analysis ; Surface energy ; Temperature effects ; Van der Waals forces ; Voltage</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2023-10, Vol.103 (10), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2728-88c03ee8b23e27a0ac4627808093194af02aae5f4655f196699d6cf29a0737763</cites><orcidid>0000-0003-2850-4254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.202200268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.202200268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Huang, Yunzhi</creatorcontrib><creatorcontrib>Zheng, Huayong</creatorcontrib><creatorcontrib>Chen, Xiuhua</creatorcontrib><creatorcontrib>Feng, Miaolin</creatorcontrib><title>Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper. The governing equations of the model are derived via the variational principle and the generalized differential quadrature methods. Results reveal that the van der Waals force and the Casimir force reduce the pull‐in voltage and pull‐in phonon and phason displacements of QCs. Moreover, the pull‐in voltage increases with the reduction in phonon‐phason coupling elastic coefficients and the increment in phason elastic coefficients of QCs, indicating the considerable field‐dependence of nanostructures. Besides, the thermal correction of Casimir force and the surface residual tension have different effects on the displacements, and the micro‐mechanism of surface and small‐scale effects is discussed.
Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper.…</description><subject>Corrosion resistance</subject><subject>Electric potential</subject><subject>Generalized differential quadrature method</subject><subject>Nanotechnology devices</subject><subject>Nonlocal elasticity</subject><subject>Phonons</subject><subject>Quadratures</subject><subject>Quasicrystals</subject><subject>Stability analysis</subject><subject>Surface energy</subject><subject>Temperature effects</subject><subject>Van der Waals forces</subject><subject>Voltage</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQxi0EEqWwMltiTjnbiR2PVcWfSkUssLBErmOrrpKmtR1VYeIReEaeBFdFMLLc6e77fifdh9A1gQkBoLfvqm0nFChNAy9P0IgUlGQ5ADlFI4A8zyjl4hxdhLCGtJWEjZCZb0JUS9e4OGC1Uc0QXMCdxbteBaf9kNQGb9Sm-_r4DHsX9QqnusJxZXybJGOt0TGhNQ69t0obXLsQvVv20dTYdl6bcInOrGqCufrpY_R6f_cye8wWzw_z2XSRaSpomZWlBmZMuaTMUKFA6ZxTUUIJkhGZKwtUKVPYnBeFJZJzKWuuLZUKBBOCszG6Od7d-m7XmxCrddf79FWoaClyzgQrILkmR5f2XQje2GrrXav8UBGoDlFWhyir3ygTII_A3jVm-MddvU2fnv7Yb-DTehw</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Huang, Yunzhi</creator><creator>Zheng, Huayong</creator><creator>Chen, Xiuhua</creator><creator>Feng, Miaolin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2850-4254</orcidid></search><sort><creationdate>202310</creationdate><title>Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces</title><author>Huang, Yunzhi ; Zheng, Huayong ; Chen, Xiuhua ; Feng, Miaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2728-88c03ee8b23e27a0ac4627808093194af02aae5f4655f196699d6cf29a0737763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Corrosion resistance</topic><topic>Electric potential</topic><topic>Generalized differential quadrature method</topic><topic>Nanotechnology devices</topic><topic>Nonlocal elasticity</topic><topic>Phonons</topic><topic>Quadratures</topic><topic>Quasicrystals</topic><topic>Stability analysis</topic><topic>Surface energy</topic><topic>Temperature effects</topic><topic>Van der Waals forces</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yunzhi</creatorcontrib><creatorcontrib>Zheng, Huayong</creatorcontrib><creatorcontrib>Chen, Xiuhua</creatorcontrib><creatorcontrib>Feng, Miaolin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yunzhi</au><au>Zheng, Huayong</au><au>Chen, Xiuhua</au><au>Feng, Miaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2023-10</date><risdate>2023</risdate><volume>103</volume><issue>10</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper. The governing equations of the model are derived via the variational principle and the generalized differential quadrature methods. Results reveal that the van der Waals force and the Casimir force reduce the pull‐in voltage and pull‐in phonon and phason displacements of QCs. Moreover, the pull‐in voltage increases with the reduction in phonon‐phason coupling elastic coefficients and the increment in phason elastic coefficients of QCs, indicating the considerable field‐dependence of nanostructures. Besides, the thermal correction of Casimir force and the surface residual tension have different effects on the displacements, and the micro‐mechanism of surface and small‐scale effects is discussed.
Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper.…</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202200268</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2850-4254</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2023-10, Vol.103 (10), p.n/a |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_journals_2874637350 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Corrosion resistance Electric potential Generalized differential quadrature method Nanotechnology devices Nonlocal elasticity Phonons Quadratures Quasicrystals Stability analysis Surface energy Temperature effects Van der Waals forces Voltage |
title | Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20analysis%20of%20quasicrystal%20nano%E2%80%90switch%20with%20thermal%20effect%20and%20surface%20distributed%20forces&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Huang,%20Yunzhi&rft.date=2023-10&rft.volume=103&rft.issue=10&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202200268&rft_dat=%3Cproquest_cross%3E2874637350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874637350&rft_id=info:pmid/&rfr_iscdi=true |