Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces

Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2023-10, Vol.103 (10), p.n/a
Hauptverfasser: Huang, Yunzhi, Zheng, Huayong, Chen, Xiuhua, Feng, Miaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 103
creator Huang, Yunzhi
Zheng, Huayong
Chen, Xiuhua
Feng, Miaolin
description Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper. The governing equations of the model are derived via the variational principle and the generalized differential quadrature methods. Results reveal that the van der Waals force and the Casimir force reduce the pull‐in voltage and pull‐in phonon and phason displacements of QCs. Moreover, the pull‐in voltage increases with the reduction in phonon‐phason coupling elastic coefficients and the increment in phason elastic coefficients of QCs, indicating the considerable field‐dependence of nanostructures. Besides, the thermal correction of Casimir force and the surface residual tension have different effects on the displacements, and the micro‐mechanism of surface and small‐scale effects is discussed. Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper.…
doi_str_mv 10.1002/zamm.202200268
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874637350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874637350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2728-88c03ee8b23e27a0ac4627808093194af02aae5f4655f196699d6cf29a0737763</originalsourceid><addsrcrecordid>eNqFkL9OwzAQxi0EEqWwMltiTjnbiR2PVcWfSkUssLBErmOrrpKmtR1VYeIReEaeBFdFMLLc6e77fifdh9A1gQkBoLfvqm0nFChNAy9P0IgUlGQ5ADlFI4A8zyjl4hxdhLCGtJWEjZCZb0JUS9e4OGC1Uc0QXMCdxbteBaf9kNQGb9Sm-_r4DHsX9QqnusJxZXybJGOt0TGhNQ69t0obXLsQvVv20dTYdl6bcInOrGqCufrpY_R6f_cye8wWzw_z2XSRaSpomZWlBmZMuaTMUKFA6ZxTUUIJkhGZKwtUKVPYnBeFJZJzKWuuLZUKBBOCszG6Od7d-m7XmxCrddf79FWoaClyzgQrILkmR5f2XQje2GrrXav8UBGoDlFWhyir3ygTII_A3jVm-MddvU2fnv7Yb-DTehw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874637350</pqid></control><display><type>article</type><title>Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Yunzhi ; Zheng, Huayong ; Chen, Xiuhua ; Feng, Miaolin</creator><creatorcontrib>Huang, Yunzhi ; Zheng, Huayong ; Chen, Xiuhua ; Feng, Miaolin</creatorcontrib><description>Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper. The governing equations of the model are derived via the variational principle and the generalized differential quadrature methods. Results reveal that the van der Waals force and the Casimir force reduce the pull‐in voltage and pull‐in phonon and phason displacements of QCs. Moreover, the pull‐in voltage increases with the reduction in phonon‐phason coupling elastic coefficients and the increment in phason elastic coefficients of QCs, indicating the considerable field‐dependence of nanostructures. Besides, the thermal correction of Casimir force and the surface residual tension have different effects on the displacements, and the micro‐mechanism of surface and small‐scale effects is discussed. Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper.…</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202200268</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Corrosion resistance ; Electric potential ; Generalized differential quadrature method ; Nanotechnology devices ; Nonlocal elasticity ; Phonons ; Quadratures ; Quasicrystals ; Stability analysis ; Surface energy ; Temperature effects ; Van der Waals forces ; Voltage</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2023-10, Vol.103 (10), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2728-88c03ee8b23e27a0ac4627808093194af02aae5f4655f196699d6cf29a0737763</cites><orcidid>0000-0003-2850-4254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.202200268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.202200268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Huang, Yunzhi</creatorcontrib><creatorcontrib>Zheng, Huayong</creatorcontrib><creatorcontrib>Chen, Xiuhua</creatorcontrib><creatorcontrib>Feng, Miaolin</creatorcontrib><title>Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper. The governing equations of the model are derived via the variational principle and the generalized differential quadrature methods. Results reveal that the van der Waals force and the Casimir force reduce the pull‐in voltage and pull‐in phonon and phason displacements of QCs. Moreover, the pull‐in voltage increases with the reduction in phonon‐phason coupling elastic coefficients and the increment in phason elastic coefficients of QCs, indicating the considerable field‐dependence of nanostructures. Besides, the thermal correction of Casimir force and the surface residual tension have different effects on the displacements, and the micro‐mechanism of surface and small‐scale effects is discussed. Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper.…</description><subject>Corrosion resistance</subject><subject>Electric potential</subject><subject>Generalized differential quadrature method</subject><subject>Nanotechnology devices</subject><subject>Nonlocal elasticity</subject><subject>Phonons</subject><subject>Quadratures</subject><subject>Quasicrystals</subject><subject>Stability analysis</subject><subject>Surface energy</subject><subject>Temperature effects</subject><subject>Van der Waals forces</subject><subject>Voltage</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQxi0EEqWwMltiTjnbiR2PVcWfSkUssLBErmOrrpKmtR1VYeIReEaeBFdFMLLc6e77fifdh9A1gQkBoLfvqm0nFChNAy9P0IgUlGQ5ADlFI4A8zyjl4hxdhLCGtJWEjZCZb0JUS9e4OGC1Uc0QXMCdxbteBaf9kNQGb9Sm-_r4DHsX9QqnusJxZXybJGOt0TGhNQ69t0obXLsQvVv20dTYdl6bcInOrGqCufrpY_R6f_cye8wWzw_z2XSRaSpomZWlBmZMuaTMUKFA6ZxTUUIJkhGZKwtUKVPYnBeFJZJzKWuuLZUKBBOCszG6Od7d-m7XmxCrddf79FWoaClyzgQrILkmR5f2XQje2GrrXav8UBGoDlFWhyir3ygTII_A3jVm-MddvU2fnv7Yb-DTehw</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Huang, Yunzhi</creator><creator>Zheng, Huayong</creator><creator>Chen, Xiuhua</creator><creator>Feng, Miaolin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2850-4254</orcidid></search><sort><creationdate>202310</creationdate><title>Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces</title><author>Huang, Yunzhi ; Zheng, Huayong ; Chen, Xiuhua ; Feng, Miaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2728-88c03ee8b23e27a0ac4627808093194af02aae5f4655f196699d6cf29a0737763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Corrosion resistance</topic><topic>Electric potential</topic><topic>Generalized differential quadrature method</topic><topic>Nanotechnology devices</topic><topic>Nonlocal elasticity</topic><topic>Phonons</topic><topic>Quadratures</topic><topic>Quasicrystals</topic><topic>Stability analysis</topic><topic>Surface energy</topic><topic>Temperature effects</topic><topic>Van der Waals forces</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yunzhi</creatorcontrib><creatorcontrib>Zheng, Huayong</creatorcontrib><creatorcontrib>Chen, Xiuhua</creatorcontrib><creatorcontrib>Feng, Miaolin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yunzhi</au><au>Zheng, Huayong</au><au>Chen, Xiuhua</au><au>Feng, Miaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2023-10</date><risdate>2023</risdate><volume>103</volume><issue>10</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper. The governing equations of the model are derived via the variational principle and the generalized differential quadrature methods. Results reveal that the van der Waals force and the Casimir force reduce the pull‐in voltage and pull‐in phonon and phason displacements of QCs. Moreover, the pull‐in voltage increases with the reduction in phonon‐phason coupling elastic coefficients and the increment in phason elastic coefficients of QCs, indicating the considerable field‐dependence of nanostructures. Besides, the thermal correction of Casimir force and the surface residual tension have different effects on the displacements, and the micro‐mechanism of surface and small‐scale effects is discussed. Quasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper.…</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202200268</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2850-4254</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2023-10, Vol.103 (10), p.n/a
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_journals_2874637350
source Wiley Online Library Journals Frontfile Complete
subjects Corrosion resistance
Electric potential
Generalized differential quadrature method
Nanotechnology devices
Nonlocal elasticity
Phonons
Quadratures
Quasicrystals
Stability analysis
Surface energy
Temperature effects
Van der Waals forces
Voltage
title Instability analysis of quasicrystal nano‐switch with thermal effect and surface distributed forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20analysis%20of%20quasicrystal%20nano%E2%80%90switch%20with%20thermal%20effect%20and%20surface%20distributed%20forces&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Huang,%20Yunzhi&rft.date=2023-10&rft.volume=103&rft.issue=10&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202200268&rft_dat=%3Cproquest_cross%3E2874637350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874637350&rft_id=info:pmid/&rfr_iscdi=true