On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative
It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2879 |
creator | Usmanov, Kairat I. Nazarova, Kulzina Zh |
description | It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using the property of the involutive transformation, the problem is reduced to a mul-tipoint boundary value problem for integro-differential equations. Further, the parameterization method proposed by Profes-sor D. Dzhumabaev is applied to the problem. New parameters are introduced, and based on these parameters, we transfer to new variables. The transition to new variables makes it possible to obtain initial conditions for the equation. The method of successive approximation determines the unique solution of the integral equation. Substituting the obtained solution into the boundary conditions, we obtain a system of linear equations with respect to the introduced parameters. A connection is estab-lished between the reversibility of the matrix of the resulting system and the unique solvability of the original problem. |
doi_str_mv | 10.1063/5.0175366 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2874614208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874614208</sourcerecordid><originalsourceid>FETCH-LOGICAL-p961-cc671b5d9df3a092a28f42185851867588e03493c4d0e052925a6250a2586af23</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqVw4B9Y4oaU4necI6p4SZV66YGb5SQ2uEri1HaC-u8xtKc9zLezswPAPUYrjAR94iuES06FuAALzDkuSoHFJVggVLGCMPp5DW5i3CNEqrKUCzBvBxh9N-vadS4dobdQw37qkhu9GxKs_TS0OhzhrLvJwDH4ujM9tD7ALJuv4IvWWWuCGZLTHTSHSSfnhwh_XPrOXo0fMtzrvAZbE9yc5dncgiuru2juznMJdq8vu_V7sdm-fayfN8VYCVw0jShxzduqtVSjimgiLSNYcsmxFCWX0iDKKtqwFhnESUW4FoQjTbgU2hK6BA8n25z7MJmY1N5PYcgXFZElE5gRJDP1eKJi49J_ejUG1-evFUbqr1bF1blW-gvvm2rr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2874614208</pqid></control><display><type>conference_proceeding</type><title>On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative</title><source>AIP Journals Complete</source><creator>Usmanov, Kairat I. ; Nazarova, Kulzina Zh</creator><contributor>Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Ashyralyev, Allaberen ; Harte, Robin ; Akay, Kadri Ulas ; Kocinac, Ljubisa D. R. ; Cakalli, Huseyin ; Aral, Nazlim Deniz ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Ashyralyyev, Charyyar ; Tez, Mujgan</contributor><creatorcontrib>Usmanov, Kairat I. ; Nazarova, Kulzina Zh ; Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Ashyralyev, Allaberen ; Harte, Robin ; Akay, Kadri Ulas ; Kocinac, Ljubisa D. R. ; Cakalli, Huseyin ; Aral, Nazlim Deniz ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Ashyralyyev, Charyyar ; Tez, Mujgan</creatorcontrib><description>It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using the property of the involutive transformation, the problem is reduced to a mul-tipoint boundary value problem for integro-differential equations. Further, the parameterization method proposed by Profes-sor D. Dzhumabaev is applied to the problem. New parameters are introduced, and based on these parameters, we transfer to new variables. The transition to new variables makes it possible to obtain initial conditions for the equation. The method of successive approximation determines the unique solution of the integral equation. Substituting the obtained solution into the boundary conditions, we obtain a system of linear equations with respect to the introduced parameters. A connection is estab-lished between the reversibility of the matrix of the resulting system and the unique solvability of the original problem.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0175366</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Boundary value problems ; Differential equations ; Initial conditions ; Integral equations ; Linear equations ; Mathematical analysis ; Parameterization ; Parameters</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2879 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0175366$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Canak, Ibrahim</contributor><contributor>Dik, Mehmet</contributor><contributor>Kandemir, Hacer Sengul</contributor><contributor>Gurtug, Ozay</contributor><contributor>Ashyralyev, Allaberen</contributor><contributor>Harte, Robin</contributor><contributor>Akay, Kadri Ulas</contributor><contributor>Kocinac, Ljubisa D. R.</contributor><contributor>Cakalli, Huseyin</contributor><contributor>Aral, Nazlim Deniz</contributor><contributor>Ucgun, Filiz Cagatay</contributor><contributor>Savas, Ekrem</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Tez, Mujgan</contributor><creatorcontrib>Usmanov, Kairat I.</creatorcontrib><creatorcontrib>Nazarova, Kulzina Zh</creatorcontrib><title>On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative</title><title>AIP Conference Proceedings</title><description>It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using the property of the involutive transformation, the problem is reduced to a mul-tipoint boundary value problem for integro-differential equations. Further, the parameterization method proposed by Profes-sor D. Dzhumabaev is applied to the problem. New parameters are introduced, and based on these parameters, we transfer to new variables. The transition to new variables makes it possible to obtain initial conditions for the equation. The method of successive approximation determines the unique solution of the integral equation. Substituting the obtained solution into the boundary conditions, we obtain a system of linear equations with respect to the introduced parameters. A connection is estab-lished between the reversibility of the matrix of the resulting system and the unique solvability of the original problem.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Initial conditions</subject><subject>Integral equations</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Parameterization</subject><subject>Parameters</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtPwzAQhC0EEqVw4B9Y4oaU4necI6p4SZV66YGb5SQ2uEri1HaC-u8xtKc9zLezswPAPUYrjAR94iuES06FuAALzDkuSoHFJVggVLGCMPp5DW5i3CNEqrKUCzBvBxh9N-vadS4dobdQw37qkhu9GxKs_TS0OhzhrLvJwDH4ujM9tD7ALJuv4IvWWWuCGZLTHTSHSSfnhwh_XPrOXo0fMtzrvAZbE9yc5dncgiuru2juznMJdq8vu_V7sdm-fayfN8VYCVw0jShxzduqtVSjimgiLSNYcsmxFCWX0iDKKtqwFhnESUW4FoQjTbgU2hK6BA8n25z7MJmY1N5PYcgXFZElE5gRJDP1eKJi49J_ejUG1-evFUbqr1bF1blW-gvvm2rr</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Usmanov, Kairat I.</creator><creator>Nazarova, Kulzina Zh</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231009</creationdate><title>On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative</title><author>Usmanov, Kairat I. ; Nazarova, Kulzina Zh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p961-cc671b5d9df3a092a28f42185851867588e03493c4d0e052925a6250a2586af23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Initial conditions</topic><topic>Integral equations</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Parameterization</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usmanov, Kairat I.</creatorcontrib><creatorcontrib>Nazarova, Kulzina Zh</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usmanov, Kairat I.</au><au>Nazarova, Kulzina Zh</au><au>Canak, Ibrahim</au><au>Dik, Mehmet</au><au>Kandemir, Hacer Sengul</au><au>Gurtug, Ozay</au><au>Ashyralyev, Allaberen</au><au>Harte, Robin</au><au>Akay, Kadri Ulas</au><au>Kocinac, Ljubisa D. R.</au><au>Cakalli, Huseyin</au><au>Aral, Nazlim Deniz</au><au>Ucgun, Filiz Cagatay</au><au>Savas, Ekrem</au><au>Ashyralyyev, Charyyar</au><au>Tez, Mujgan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-10-09</date><risdate>2023</risdate><volume>2879</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using the property of the involutive transformation, the problem is reduced to a mul-tipoint boundary value problem for integro-differential equations. Further, the parameterization method proposed by Profes-sor D. Dzhumabaev is applied to the problem. New parameters are introduced, and based on these parameters, we transfer to new variables. The transition to new variables makes it possible to obtain initial conditions for the equation. The method of successive approximation determines the unique solution of the integral equation. Substituting the obtained solution into the boundary conditions, we obtain a system of linear equations with respect to the introduced parameters. A connection is estab-lished between the reversibility of the matrix of the resulting system and the unique solvability of the original problem.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0175366</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2879 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2874614208 |
source | AIP Journals Complete |
subjects | Boundary conditions Boundary value problems Differential equations Initial conditions Integral equations Linear equations Mathematical analysis Parameterization Parameters |
title | On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20solvability%20of%20a%20multipoint%20boundary%20value%20problem%20for%20integro-differential%20equations%20with%20a%20conformable%20derivative&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Usmanov,%20Kairat%20I.&rft.date=2023-10-09&rft.volume=2879&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0175366&rft_dat=%3Cproquest_scita%3E2874614208%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874614208&rft_id=info:pmid/&rfr_iscdi=true |