On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative

It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Usmanov, Kairat I., Nazarova, Kulzina Zh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2879
creator Usmanov, Kairat I.
Nazarova, Kulzina Zh
description It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using the property of the involutive transformation, the problem is reduced to a mul-tipoint boundary value problem for integro-differential equations. Further, the parameterization method proposed by Profes-sor D. Dzhumabaev is applied to the problem. New parameters are introduced, and based on these parameters, we transfer to new variables. The transition to new variables makes it possible to obtain initial conditions for the equation. The method of successive approximation determines the unique solution of the integral equation. Substituting the obtained solution into the boundary conditions, we obtain a system of linear equations with respect to the introduced parameters. A connection is estab-lished between the reversibility of the matrix of the resulting system and the unique solvability of the original problem.
doi_str_mv 10.1063/5.0175366
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2874614208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874614208</sourcerecordid><originalsourceid>FETCH-LOGICAL-p961-cc671b5d9df3a092a28f42185851867588e03493c4d0e052925a6250a2586af23</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqVw4B9Y4oaU4necI6p4SZV66YGb5SQ2uEri1HaC-u8xtKc9zLezswPAPUYrjAR94iuES06FuAALzDkuSoHFJVggVLGCMPp5DW5i3CNEqrKUCzBvBxh9N-vadS4dobdQw37qkhu9GxKs_TS0OhzhrLvJwDH4ujM9tD7ALJuv4IvWWWuCGZLTHTSHSSfnhwh_XPrOXo0fMtzrvAZbE9yc5dncgiuru2juznMJdq8vu_V7sdm-fayfN8VYCVw0jShxzduqtVSjimgiLSNYcsmxFCWX0iDKKtqwFhnESUW4FoQjTbgU2hK6BA8n25z7MJmY1N5PYcgXFZElE5gRJDP1eKJi49J_ejUG1-evFUbqr1bF1blW-gvvm2rr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2874614208</pqid></control><display><type>conference_proceeding</type><title>On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative</title><source>AIP Journals Complete</source><creator>Usmanov, Kairat I. ; Nazarova, Kulzina Zh</creator><contributor>Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Ashyralyev, Allaberen ; Harte, Robin ; Akay, Kadri Ulas ; Kocinac, Ljubisa D. R. ; Cakalli, Huseyin ; Aral, Nazlim Deniz ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Ashyralyyev, Charyyar ; Tez, Mujgan</contributor><creatorcontrib>Usmanov, Kairat I. ; Nazarova, Kulzina Zh ; Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Ashyralyev, Allaberen ; Harte, Robin ; Akay, Kadri Ulas ; Kocinac, Ljubisa D. R. ; Cakalli, Huseyin ; Aral, Nazlim Deniz ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Ashyralyyev, Charyyar ; Tez, Mujgan</creatorcontrib><description>It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using the property of the involutive transformation, the problem is reduced to a mul-tipoint boundary value problem for integro-differential equations. Further, the parameterization method proposed by Profes-sor D. Dzhumabaev is applied to the problem. New parameters are introduced, and based on these parameters, we transfer to new variables. The transition to new variables makes it possible to obtain initial conditions for the equation. The method of successive approximation determines the unique solution of the integral equation. Substituting the obtained solution into the boundary conditions, we obtain a system of linear equations with respect to the introduced parameters. A connection is estab-lished between the reversibility of the matrix of the resulting system and the unique solvability of the original problem.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0175366</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Boundary value problems ; Differential equations ; Initial conditions ; Integral equations ; Linear equations ; Mathematical analysis ; Parameterization ; Parameters</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2879 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0175366$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Canak, Ibrahim</contributor><contributor>Dik, Mehmet</contributor><contributor>Kandemir, Hacer Sengul</contributor><contributor>Gurtug, Ozay</contributor><contributor>Ashyralyev, Allaberen</contributor><contributor>Harte, Robin</contributor><contributor>Akay, Kadri Ulas</contributor><contributor>Kocinac, Ljubisa D. R.</contributor><contributor>Cakalli, Huseyin</contributor><contributor>Aral, Nazlim Deniz</contributor><contributor>Ucgun, Filiz Cagatay</contributor><contributor>Savas, Ekrem</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Tez, Mujgan</contributor><creatorcontrib>Usmanov, Kairat I.</creatorcontrib><creatorcontrib>Nazarova, Kulzina Zh</creatorcontrib><title>On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative</title><title>AIP Conference Proceedings</title><description>It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using the property of the involutive transformation, the problem is reduced to a mul-tipoint boundary value problem for integro-differential equations. Further, the parameterization method proposed by Profes-sor D. Dzhumabaev is applied to the problem. New parameters are introduced, and based on these parameters, we transfer to new variables. The transition to new variables makes it possible to obtain initial conditions for the equation. The method of successive approximation determines the unique solution of the integral equation. Substituting the obtained solution into the boundary conditions, we obtain a system of linear equations with respect to the introduced parameters. A connection is estab-lished between the reversibility of the matrix of the resulting system and the unique solvability of the original problem.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Initial conditions</subject><subject>Integral equations</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Parameterization</subject><subject>Parameters</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtPwzAQhC0EEqVw4B9Y4oaU4necI6p4SZV66YGb5SQ2uEri1HaC-u8xtKc9zLezswPAPUYrjAR94iuES06FuAALzDkuSoHFJVggVLGCMPp5DW5i3CNEqrKUCzBvBxh9N-vadS4dobdQw37qkhu9GxKs_TS0OhzhrLvJwDH4ujM9tD7ALJuv4IvWWWuCGZLTHTSHSSfnhwh_XPrOXo0fMtzrvAZbE9yc5dncgiuru2juznMJdq8vu_V7sdm-fayfN8VYCVw0jShxzduqtVSjimgiLSNYcsmxFCWX0iDKKtqwFhnESUW4FoQjTbgU2hK6BA8n25z7MJmY1N5PYcgXFZElE5gRJDP1eKJi49J_ejUG1-evFUbqr1bF1blW-gvvm2rr</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Usmanov, Kairat I.</creator><creator>Nazarova, Kulzina Zh</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231009</creationdate><title>On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative</title><author>Usmanov, Kairat I. ; Nazarova, Kulzina Zh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p961-cc671b5d9df3a092a28f42185851867588e03493c4d0e052925a6250a2586af23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Initial conditions</topic><topic>Integral equations</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Parameterization</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usmanov, Kairat I.</creatorcontrib><creatorcontrib>Nazarova, Kulzina Zh</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usmanov, Kairat I.</au><au>Nazarova, Kulzina Zh</au><au>Canak, Ibrahim</au><au>Dik, Mehmet</au><au>Kandemir, Hacer Sengul</au><au>Gurtug, Ozay</au><au>Ashyralyev, Allaberen</au><au>Harte, Robin</au><au>Akay, Kadri Ulas</au><au>Kocinac, Ljubisa D. R.</au><au>Cakalli, Huseyin</au><au>Aral, Nazlim Deniz</au><au>Ucgun, Filiz Cagatay</au><au>Savas, Ekrem</au><au>Ashyralyyev, Charyyar</au><au>Tez, Mujgan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-10-09</date><risdate>2023</risdate><volume>2879</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>It is known that one ofathe special cases of integro-differential equations is the so-called differential equations of fractional order. In this paper, we consider a multipoint boundary value problem for an involutively transformed integro-differential equation with a conformable derivative. Using the property of the involutive transformation, the problem is reduced to a mul-tipoint boundary value problem for integro-differential equations. Further, the parameterization method proposed by Profes-sor D. Dzhumabaev is applied to the problem. New parameters are introduced, and based on these parameters, we transfer to new variables. The transition to new variables makes it possible to obtain initial conditions for the equation. The method of successive approximation determines the unique solution of the integral equation. Substituting the obtained solution into the boundary conditions, we obtain a system of linear equations with respect to the introduced parameters. A connection is estab-lished between the reversibility of the matrix of the resulting system and the unique solvability of the original problem.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0175366</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2879 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2874614208
source AIP Journals Complete
subjects Boundary conditions
Boundary value problems
Differential equations
Initial conditions
Integral equations
Linear equations
Mathematical analysis
Parameterization
Parameters
title On solvability of a multipoint boundary value problem for integro-differential equations with a conformable derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20solvability%20of%20a%20multipoint%20boundary%20value%20problem%20for%20integro-differential%20equations%20with%20a%20conformable%20derivative&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Usmanov,%20Kairat%20I.&rft.date=2023-10-09&rft.volume=2879&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0175366&rft_dat=%3Cproquest_scita%3E2874614208%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874614208&rft_id=info:pmid/&rfr_iscdi=true