Objective function in convolutional neural network to generate caption for image - a review

An objective function is one strategy to achieve a fitting model in machine learning. The target of this paper is to acquire more information about the objective function and to observe of it application in CNN. Various CNN architecture has proposed to achieve high accuracy by apply of the objective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nursikuwagus, A., Munir, R., Khodra, M. Leylia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2510
creator Nursikuwagus, A.
Munir, R.
Khodra, M. Leylia
description An objective function is one strategy to achieve a fitting model in machine learning. The target of this paper is to acquire more information about the objective function and to observe of it application in CNN. Various CNN architecture has proposed to achieve high accuracy by apply of the objective function. We used the CNN framework as a method to explain the content of architecture. To achieve a good model, every CNN used an objective function as a parameter to measure the closeness between the learning dataset and the actual dataset. As a pre-trained model to extract the critical feature, many scholars proposed a pre-trained CNN model to get high accuracy and a significant model. One of the ablation studies in CNN is a reformulation of the objective function. An objective function has often shown by a matrix operation known as a loss function or loss entropy. As a result, from this research is various CNN architecture models that tailor to many different objects. We can review from architecture, formulation, filter, and dense layer to achieve a good feature extraction as a feature map. Many parameters can observe on every step of CNN. Impact of this review, we can get a baseline model as beginning research to develop a new CNN architecture that can compare with the baseline model.
doi_str_mv 10.1063/5.0129585
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2874613867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874613867</sourcerecordid><originalsourceid>FETCH-LOGICAL-p965-d28da8f47bd179cdf7540414c711b45577ba17012fd0dea4273da366c50dbb773</originalsourceid><addsrcrecordid>eNotkEtrwzAQhEVpoWnaQ_-BoLeCU631WPtYQl8QyCWHQg9CluTgNLVc-RH672snOc0uzC7fDCH3wBbAFH-SCwZpLjN5QWYgJSSoQF2SGWO5SFLBP6_JTdvuGEtzxGxGvtbFztuuGjwt-3ocQk2rmtpQD2HfT6vZ09r38SjdIcRv2gW69bWPpvPUmuZ4U4ZIqx-z9TShhkY_VP5wS65Ks2_93VnnZPP6slm-J6v128fyeZU0uZKJSzNnslJg4QBz60qUggkQFgEKISViYQDHVKVjzhuRIneGK2Ulc0WByOfk4fS2ieG3922nd6GPI3er0wyFAp6pyfV4crW26szErJs4Esc_DUxP3Wmpz93xfwK4YQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2874613867</pqid></control><display><type>conference_proceeding</type><title>Objective function in convolutional neural network to generate caption for image - a review</title><source>AIP Journals Complete</source><creator>Nursikuwagus, A. ; Munir, R. ; Khodra, M. Leylia</creator><contributor>Mujiarto ; Tlelo-Cuautle, E ; Komaro, M. ; Lien, C-H ; Vaidyanathan, Sundarapandian ; Jerusalem, M. Adam ; Mamat, Mustafa</contributor><creatorcontrib>Nursikuwagus, A. ; Munir, R. ; Khodra, M. Leylia ; Mujiarto ; Tlelo-Cuautle, E ; Komaro, M. ; Lien, C-H ; Vaidyanathan, Sundarapandian ; Jerusalem, M. Adam ; Mamat, Mustafa</creatorcontrib><description>An objective function is one strategy to achieve a fitting model in machine learning. The target of this paper is to acquire more information about the objective function and to observe of it application in CNN. Various CNN architecture has proposed to achieve high accuracy by apply of the objective function. We used the CNN framework as a method to explain the content of architecture. To achieve a good model, every CNN used an objective function as a parameter to measure the closeness between the learning dataset and the actual dataset. As a pre-trained model to extract the critical feature, many scholars proposed a pre-trained CNN model to get high accuracy and a significant model. One of the ablation studies in CNN is a reformulation of the objective function. An objective function has often shown by a matrix operation known as a loss function or loss entropy. As a result, from this research is various CNN architecture models that tailor to many different objects. We can review from architecture, formulation, filter, and dense layer to achieve a good feature extraction as a feature map. Many parameters can observe on every step of CNN. Impact of this review, we can get a baseline model as beginning research to develop a new CNN architecture that can compare with the baseline model.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0129585</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ablation ; Accuracy ; Artificial neural networks ; Datasets ; Feature extraction ; Feature maps ; Machine learning ; Mathematical models ; Parameters</subject><ispartof>AIP conference proceedings, 2023, Vol.2510 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0129585$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Mujiarto</contributor><contributor>Tlelo-Cuautle, E</contributor><contributor>Komaro, M.</contributor><contributor>Lien, C-H</contributor><contributor>Vaidyanathan, Sundarapandian</contributor><contributor>Jerusalem, M. Adam</contributor><contributor>Mamat, Mustafa</contributor><creatorcontrib>Nursikuwagus, A.</creatorcontrib><creatorcontrib>Munir, R.</creatorcontrib><creatorcontrib>Khodra, M. Leylia</creatorcontrib><title>Objective function in convolutional neural network to generate caption for image - a review</title><title>AIP conference proceedings</title><description>An objective function is one strategy to achieve a fitting model in machine learning. The target of this paper is to acquire more information about the objective function and to observe of it application in CNN. Various CNN architecture has proposed to achieve high accuracy by apply of the objective function. We used the CNN framework as a method to explain the content of architecture. To achieve a good model, every CNN used an objective function as a parameter to measure the closeness between the learning dataset and the actual dataset. As a pre-trained model to extract the critical feature, many scholars proposed a pre-trained CNN model to get high accuracy and a significant model. One of the ablation studies in CNN is a reformulation of the objective function. An objective function has often shown by a matrix operation known as a loss function or loss entropy. As a result, from this research is various CNN architecture models that tailor to many different objects. We can review from architecture, formulation, filter, and dense layer to achieve a good feature extraction as a feature map. Many parameters can observe on every step of CNN. Impact of this review, we can get a baseline model as beginning research to develop a new CNN architecture that can compare with the baseline model.</description><subject>Ablation</subject><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Parameters</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtrwzAQhEVpoWnaQ_-BoLeCU631WPtYQl8QyCWHQg9CluTgNLVc-RH672snOc0uzC7fDCH3wBbAFH-SCwZpLjN5QWYgJSSoQF2SGWO5SFLBP6_JTdvuGEtzxGxGvtbFztuuGjwt-3ocQk2rmtpQD2HfT6vZ09r38SjdIcRv2gW69bWPpvPUmuZ4U4ZIqx-z9TShhkY_VP5wS65Ks2_93VnnZPP6slm-J6v128fyeZU0uZKJSzNnslJg4QBz60qUggkQFgEKISViYQDHVKVjzhuRIneGK2Ulc0WByOfk4fS2ieG3922nd6GPI3er0wyFAp6pyfV4crW26szErJs4Esc_DUxP3Wmpz93xfwK4YQU</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Nursikuwagus, A.</creator><creator>Munir, R.</creator><creator>Khodra, M. Leylia</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231009</creationdate><title>Objective function in convolutional neural network to generate caption for image - a review</title><author>Nursikuwagus, A. ; Munir, R. ; Khodra, M. Leylia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p965-d28da8f47bd179cdf7540414c711b45577ba17012fd0dea4273da366c50dbb773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nursikuwagus, A.</creatorcontrib><creatorcontrib>Munir, R.</creatorcontrib><creatorcontrib>Khodra, M. Leylia</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nursikuwagus, A.</au><au>Munir, R.</au><au>Khodra, M. Leylia</au><au>Mujiarto</au><au>Tlelo-Cuautle, E</au><au>Komaro, M.</au><au>Lien, C-H</au><au>Vaidyanathan, Sundarapandian</au><au>Jerusalem, M. Adam</au><au>Mamat, Mustafa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Objective function in convolutional neural network to generate caption for image - a review</atitle><btitle>AIP conference proceedings</btitle><date>2023-10-09</date><risdate>2023</risdate><volume>2510</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>An objective function is one strategy to achieve a fitting model in machine learning. The target of this paper is to acquire more information about the objective function and to observe of it application in CNN. Various CNN architecture has proposed to achieve high accuracy by apply of the objective function. We used the CNN framework as a method to explain the content of architecture. To achieve a good model, every CNN used an objective function as a parameter to measure the closeness between the learning dataset and the actual dataset. As a pre-trained model to extract the critical feature, many scholars proposed a pre-trained CNN model to get high accuracy and a significant model. One of the ablation studies in CNN is a reformulation of the objective function. An objective function has often shown by a matrix operation known as a loss function or loss entropy. As a result, from this research is various CNN architecture models that tailor to many different objects. We can review from architecture, formulation, filter, and dense layer to achieve a good feature extraction as a feature map. Many parameters can observe on every step of CNN. Impact of this review, we can get a baseline model as beginning research to develop a new CNN architecture that can compare with the baseline model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0129585</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2510 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2874613867
source AIP Journals Complete
subjects Ablation
Accuracy
Artificial neural networks
Datasets
Feature extraction
Feature maps
Machine learning
Mathematical models
Parameters
title Objective function in convolutional neural network to generate caption for image - a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Objective%20function%20in%20convolutional%20neural%20network%20to%20generate%20caption%20for%20image%20-%20a%20review&rft.btitle=AIP%20conference%20proceedings&rft.au=Nursikuwagus,%20A.&rft.date=2023-10-09&rft.volume=2510&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0129585&rft_dat=%3Cproquest_scita%3E2874613867%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874613867&rft_id=info:pmid/&rfr_iscdi=true