Detection and Classification of Diabetic Retinopathy using Deep Learning

Detection of Diabetic Retinopathy at the early stages could significantly reduce the need for complicated and expensive surgeries. The availability of large datasets has fuelled research in this field. In this project, diabetic retinopathy is detected and classified into five stages: no DR, severe D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CARDIOMETRY 2023-03 (26), p.808-813
Hauptverfasser: Duraichi, N., Jalaja, S., Merlin, C.D., Meena, J.S., Kamali, R.N., Manoj, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue 26
container_start_page 808
container_title CARDIOMETRY
container_volume
creator Duraichi, N.
Jalaja, S.
Merlin, C.D.
Meena, J.S.
Kamali, R.N.
Manoj, K.
description Detection of Diabetic Retinopathy at the early stages could significantly reduce the need for complicated and expensive surgeries. The availability of large datasets has fuelled research in this field. In this project, diabetic retinopathy is detected and classified into five stages: no DR, severe DR, Moderate DR, Proliferative DR, and mild DR. This is made possible with the help of various deep learning techniques. A trained model (ResNet-50 architecture) is used for the extraction of various features from the images. This model gives an accuracy of 0.47% in testing. The dataset used is the Aptos 2019 dataset which is available on Kaggle.
doi_str_mv 10.18137/cardiometry.2023.26.808813
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874572431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874572431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1913-8f35da2142e1292132a893c4efc2c4d9d490433c00aa287db53f20bce93f76d93</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMgWGr_Q6DnXZOZ7EfwJK1aoSCInkM2H5rSbtZke-i_d209eJlh3nmYgYeQJWclbzk2d0YnG-LBjelUAgMsoS5b1k67KzIDZKJoAOGGLHLeMcY4cMmwmpHN2o3OjCH2VPeWrvY65-CD0ecoeroOunNjMPRtqn0c9Ph1oscc-k-6dm6gW6dTP0235NrrfXaLvz4nH0-P76tNsX19flk9bAvDJcei9VhZDVyA4yCBI-hWohHOGzDCSiskE4iGMa2hbWxXoQfWGSfRN7WVOCfLy90hxe-jy6PaxWPqp5dq4kXVgEA-UfcXyqSYc3JeDSkcdDopztTZmPpnTP0aU1CrizH8AcYCZDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874572431</pqid></control><display><type>article</type><title>Detection and Classification of Diabetic Retinopathy using Deep Learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Duraichi, N. ; Jalaja, S. ; Merlin, C.D. ; Meena, J.S. ; Kamali, R.N. ; Manoj, K.</creator><creatorcontrib>Duraichi, N. ; Jalaja, S. ; Merlin, C.D. ; Meena, J.S. ; Kamali, R.N. ; Manoj, K.</creatorcontrib><description>Detection of Diabetic Retinopathy at the early stages could significantly reduce the need for complicated and expensive surgeries. The availability of large datasets has fuelled research in this field. In this project, diabetic retinopathy is detected and classified into five stages: no DR, severe DR, Moderate DR, Proliferative DR, and mild DR. This is made possible with the help of various deep learning techniques. A trained model (ResNet-50 architecture) is used for the extraction of various features from the images. This model gives an accuracy of 0.47% in testing. The dataset used is the Aptos 2019 dataset which is available on Kaggle.</description><identifier>EISSN: 2304-7232</identifier><identifier>DOI: 10.18137/cardiometry.2023.26.808813</identifier><language>eng</language><publisher>Moscow: Russian New University</publisher><subject>Diabetic retinopathy</subject><ispartof>CARDIOMETRY, 2023-03 (26), p.808-813</ispartof><rights>2023. This work is published under http://www.cardiometry.net/issues (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1913-8f35da2142e1292132a893c4efc2c4d9d490433c00aa287db53f20bce93f76d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Duraichi, N.</creatorcontrib><creatorcontrib>Jalaja, S.</creatorcontrib><creatorcontrib>Merlin, C.D.</creatorcontrib><creatorcontrib>Meena, J.S.</creatorcontrib><creatorcontrib>Kamali, R.N.</creatorcontrib><creatorcontrib>Manoj, K.</creatorcontrib><title>Detection and Classification of Diabetic Retinopathy using Deep Learning</title><title>CARDIOMETRY</title><description>Detection of Diabetic Retinopathy at the early stages could significantly reduce the need for complicated and expensive surgeries. The availability of large datasets has fuelled research in this field. In this project, diabetic retinopathy is detected and classified into five stages: no DR, severe DR, Moderate DR, Proliferative DR, and mild DR. This is made possible with the help of various deep learning techniques. A trained model (ResNet-50 architecture) is used for the extraction of various features from the images. This model gives an accuracy of 0.47% in testing. The dataset used is the Aptos 2019 dataset which is available on Kaggle.</description><subject>Diabetic retinopathy</subject><issn>2304-7232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1LAzEQhoMgWGr_Q6DnXZOZ7EfwJK1aoSCInkM2H5rSbtZke-i_d209eJlh3nmYgYeQJWclbzk2d0YnG-LBjelUAgMsoS5b1k67KzIDZKJoAOGGLHLeMcY4cMmwmpHN2o3OjCH2VPeWrvY65-CD0ecoeroOunNjMPRtqn0c9Ph1oscc-k-6dm6gW6dTP0235NrrfXaLvz4nH0-P76tNsX19flk9bAvDJcei9VhZDVyA4yCBI-hWohHOGzDCSiskE4iGMa2hbWxXoQfWGSfRN7WVOCfLy90hxe-jy6PaxWPqp5dq4kXVgEA-UfcXyqSYc3JeDSkcdDopztTZmPpnTP0aU1CrizH8AcYCZDc</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Duraichi, N.</creator><creator>Jalaja, S.</creator><creator>Merlin, C.D.</creator><creator>Meena, J.S.</creator><creator>Kamali, R.N.</creator><creator>Manoj, K.</creator><general>Russian New University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230301</creationdate><title>Detection and Classification of Diabetic Retinopathy using Deep Learning</title><author>Duraichi, N. ; Jalaja, S. ; Merlin, C.D. ; Meena, J.S. ; Kamali, R.N. ; Manoj, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1913-8f35da2142e1292132a893c4efc2c4d9d490433c00aa287db53f20bce93f76d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diabetic retinopathy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duraichi, N.</creatorcontrib><creatorcontrib>Jalaja, S.</creatorcontrib><creatorcontrib>Merlin, C.D.</creatorcontrib><creatorcontrib>Meena, J.S.</creatorcontrib><creatorcontrib>Kamali, R.N.</creatorcontrib><creatorcontrib>Manoj, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>CARDIOMETRY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duraichi, N.</au><au>Jalaja, S.</au><au>Merlin, C.D.</au><au>Meena, J.S.</au><au>Kamali, R.N.</au><au>Manoj, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Classification of Diabetic Retinopathy using Deep Learning</atitle><jtitle>CARDIOMETRY</jtitle><date>2023-03-01</date><risdate>2023</risdate><issue>26</issue><spage>808</spage><epage>813</epage><pages>808-813</pages><eissn>2304-7232</eissn><abstract>Detection of Diabetic Retinopathy at the early stages could significantly reduce the need for complicated and expensive surgeries. The availability of large datasets has fuelled research in this field. In this project, diabetic retinopathy is detected and classified into five stages: no DR, severe DR, Moderate DR, Proliferative DR, and mild DR. This is made possible with the help of various deep learning techniques. A trained model (ResNet-50 architecture) is used for the extraction of various features from the images. This model gives an accuracy of 0.47% in testing. The dataset used is the Aptos 2019 dataset which is available on Kaggle.</abstract><cop>Moscow</cop><pub>Russian New University</pub><doi>10.18137/cardiometry.2023.26.808813</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2304-7232
ispartof CARDIOMETRY, 2023-03 (26), p.808-813
issn 2304-7232
language eng
recordid cdi_proquest_journals_2874572431
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Diabetic retinopathy
title Detection and Classification of Diabetic Retinopathy using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Classification%20of%20Diabetic%20Retinopathy%20using%20Deep%20Learning&rft.jtitle=CARDIOMETRY&rft.au=Duraichi,%20N.&rft.date=2023-03-01&rft.issue=26&rft.spage=808&rft.epage=813&rft.pages=808-813&rft.eissn=2304-7232&rft_id=info:doi/10.18137/cardiometry.2023.26.808813&rft_dat=%3Cproquest_cross%3E2874572431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874572431&rft_id=info:pmid/&rfr_iscdi=true