On Enriched Categories and Induced Representations
We show that induced representations for a pair of diffeological Lie groups exist, in the form of an indexed colimit in the category of diffeological spaces.
Gespeichert in:
Veröffentlicht in: | Theory and applications of categories 2023-01, Vol.39 (29), p.714 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 29 |
container_start_page | 714 |
container_title | Theory and applications of categories |
container_volume | 39 |
creator | Leslie, Joshua A Twum, Ralph A |
description | We show that induced representations for a pair of diffeological Lie groups exist, in the form of an indexed colimit in the category of diffeological spaces. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2874555891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874555891</sourcerecordid><originalsourceid>FETCH-proquest_journals_28745558913</originalsourceid><addsrcrecordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42Qw8s9TcM0rykzOSE1RcE4sSU3PL8pMLVZIzEtR8MxLKU0GCgelFhSlFqfmlSSWZObnFfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhbmJqamphaWhMXGqAHPtM18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874555891</pqid></control><display><type>article</type><title>On Enriched Categories and Induced Representations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Leslie, Joshua A ; Twum, Ralph A</creator><creatorcontrib>Leslie, Joshua A ; Twum, Ralph A</creatorcontrib><description>We show that induced representations for a pair of diffeological Lie groups exist, in the form of an indexed colimit in the category of diffeological spaces.</description><identifier>EISSN: 1201-561X</identifier><language>eng</language><publisher>Sackville: R. Rosebrugh</publisher><subject>Lie groups ; Representations ; Theoretical mathematics</subject><ispartof>Theory and applications of categories, 2023-01, Vol.39 (29), p.714</ispartof><rights>Copyright R. Rosebrugh 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Leslie, Joshua A</creatorcontrib><creatorcontrib>Twum, Ralph A</creatorcontrib><title>On Enriched Categories and Induced Representations</title><title>Theory and applications of categories</title><description>We show that induced representations for a pair of diffeological Lie groups exist, in the form of an indexed colimit in the category of diffeological spaces.</description><subject>Lie groups</subject><subject>Representations</subject><subject>Theoretical mathematics</subject><issn>1201-561X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42Qw8s9TcM0rykzOSE1RcE4sSU3PL8pMLVZIzEtR8MxLKU0GCgelFhSlFqfmlSSWZObnFfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhbmJqamphaWhMXGqAHPtM18</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Leslie, Joshua A</creator><creator>Twum, Ralph A</creator><general>R. Rosebrugh</general><scope>JQ2</scope></search><sort><creationdate>20230101</creationdate><title>On Enriched Categories and Induced Representations</title><author>Leslie, Joshua A ; Twum, Ralph A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28745558913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Lie groups</topic><topic>Representations</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leslie, Joshua A</creatorcontrib><creatorcontrib>Twum, Ralph A</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Theory and applications of categories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leslie, Joshua A</au><au>Twum, Ralph A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Enriched Categories and Induced Representations</atitle><jtitle>Theory and applications of categories</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>39</volume><issue>29</issue><spage>714</spage><pages>714-</pages><eissn>1201-561X</eissn><abstract>We show that induced representations for a pair of diffeological Lie groups exist, in the form of an indexed colimit in the category of diffeological spaces.</abstract><cop>Sackville</cop><pub>R. Rosebrugh</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1201-561X |
ispartof | Theory and applications of categories, 2023-01, Vol.39 (29), p.714 |
issn | 1201-561X |
language | eng |
recordid | cdi_proquest_journals_2874555891 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals |
subjects | Lie groups Representations Theoretical mathematics |
title | On Enriched Categories and Induced Representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Enriched%20Categories%20and%20Induced%20Representations&rft.jtitle=Theory%20and%20applications%20of%20categories&rft.au=Leslie,%20Joshua%20A&rft.date=2023-01-01&rft.volume=39&rft.issue=29&rft.spage=714&rft.pages=714-&rft.eissn=1201-561X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2874555891%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874555891&rft_id=info:pmid/&rfr_iscdi=true |