Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain
In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reana...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2023-10, Vol.128 (19) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 128 |
creator | Weber, A M Thompson, L G Davis, M E Mosley‐Thompson Beaudon, E Kenny, D P‐N Lin R Sierra‐Hernández |
description | In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes. |
doi_str_mv | 10.1029/2023JD039006 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2874511148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874511148</sourcerecordid><originalsourceid>FETCH-LOGICAL-p151t-b57ed9f24ae5f96df9e73a4008c14bf34f6e93294d75fb35647b8c80ef05ea83</originalsourceid><addsrcrecordid>eNo9js1Kw0AcxBdRsNTefIAFD56i-5nsHiVtbaVSD0HES9kk_7VbYjbuJgXfy-fwmQwozmWGOcz8ELqk5IYSpm8ZYfxhTrgmJD1BE0ZTnSit09P_nL2co1mMBzJKES6kmKDXeXBHCBF7i7-_qNriZxOcKV3j-k_8FCBCOEKNXYvXFeDcjw1eBv-OFyb0--uIV-5tD7HHRfCdq0yDH_3Q9sa1F-jMmibC7M-nqFguinyVbLb36_xuk3RU0j4pZQa1tkwYkFantdWQcSNGxIqK0nJhU9CcaVFn0pZcpiIrVaUIWCLBKD5FV7-zXfAfw0iyO_ghtOPjjqlMSEqpUPwH0AhUWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874511148</pqid></control><display><type>article</type><title>Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Weber, A M ; Thompson, L G ; Davis, M ; E Mosley‐Thompson ; Beaudon, E ; Kenny, D ; P‐N Lin ; R Sierra‐Hernández</creator><creatorcontrib>Weber, A M ; Thompson, L G ; Davis, M ; E Mosley‐Thompson ; Beaudon, E ; Kenny, D ; P‐N Lin ; R Sierra‐Hernández</creatorcontrib><description>In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2023JD039006</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Archives & records ; Atmospheric circulation ; Atmospheric temperature ; Climate ; Climate variability ; Climatic analysis ; Climatic data ; Cores ; Correlation analysis ; Datasets ; Earth ; El Nino ; El Nino phenomena ; Fractionation ; Geophysics ; Hydroclimate ; Hydrologic data ; Hydrology ; Ice ; Ice cores ; Isotopes ; Mountains ; Ocean warming ; Oxygen ; Precipitation ; Precipitation data ; Rainfall ; Rainfall amount ; Records ; River basins ; Sea surface ; Sea surface temperature ; Southern Oscillation ; Stable isotopes ; Statistical significance ; Statistics ; Surface temperature ; Temperature ; Temperature changes ; Upper atmosphere ; Variability ; Walker circulation</subject><ispartof>Journal of geophysical research. Atmospheres, 2023-10, Vol.128 (19)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Weber, A M</creatorcontrib><creatorcontrib>Thompson, L G</creatorcontrib><creatorcontrib>Davis, M</creatorcontrib><creatorcontrib>E Mosley‐Thompson</creatorcontrib><creatorcontrib>Beaudon, E</creatorcontrib><creatorcontrib>Kenny, D</creatorcontrib><creatorcontrib>P‐N Lin</creatorcontrib><creatorcontrib>R Sierra‐Hernández</creatorcontrib><title>Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain</title><title>Journal of geophysical research. Atmospheres</title><description>In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.</description><subject>Archives & records</subject><subject>Atmospheric circulation</subject><subject>Atmospheric temperature</subject><subject>Climate</subject><subject>Climate variability</subject><subject>Climatic analysis</subject><subject>Climatic data</subject><subject>Cores</subject><subject>Correlation analysis</subject><subject>Datasets</subject><subject>Earth</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>Fractionation</subject><subject>Geophysics</subject><subject>Hydroclimate</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Ice</subject><subject>Ice cores</subject><subject>Isotopes</subject><subject>Mountains</subject><subject>Ocean warming</subject><subject>Oxygen</subject><subject>Precipitation</subject><subject>Precipitation data</subject><subject>Rainfall</subject><subject>Rainfall amount</subject><subject>Records</subject><subject>River basins</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>Stable isotopes</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Upper atmosphere</subject><subject>Variability</subject><subject>Walker circulation</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9js1Kw0AcxBdRsNTefIAFD56i-5nsHiVtbaVSD0HES9kk_7VbYjbuJgXfy-fwmQwozmWGOcz8ELqk5IYSpm8ZYfxhTrgmJD1BE0ZTnSit09P_nL2co1mMBzJKES6kmKDXeXBHCBF7i7-_qNriZxOcKV3j-k_8FCBCOEKNXYvXFeDcjw1eBv-OFyb0--uIV-5tD7HHRfCdq0yDH_3Q9sa1F-jMmibC7M-nqFguinyVbLb36_xuk3RU0j4pZQa1tkwYkFantdWQcSNGxIqK0nJhU9CcaVFn0pZcpiIrVaUIWCLBKD5FV7-zXfAfw0iyO_ghtOPjjqlMSEqpUPwH0AhUWQ</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Weber, A M</creator><creator>Thompson, L G</creator><creator>Davis, M</creator><creator>E Mosley‐Thompson</creator><creator>Beaudon, E</creator><creator>Kenny, D</creator><creator>P‐N Lin</creator><creator>R Sierra‐Hernández</creator><general>Blackwell Publishing Ltd</general><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20231016</creationdate><title>Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain</title><author>Weber, A M ; Thompson, L G ; Davis, M ; E Mosley‐Thompson ; Beaudon, E ; Kenny, D ; P‐N Lin ; R Sierra‐Hernández</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p151t-b57ed9f24ae5f96df9e73a4008c14bf34f6e93294d75fb35647b8c80ef05ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Archives & records</topic><topic>Atmospheric circulation</topic><topic>Atmospheric temperature</topic><topic>Climate</topic><topic>Climate variability</topic><topic>Climatic analysis</topic><topic>Climatic data</topic><topic>Cores</topic><topic>Correlation analysis</topic><topic>Datasets</topic><topic>Earth</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>Fractionation</topic><topic>Geophysics</topic><topic>Hydroclimate</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Ice</topic><topic>Ice cores</topic><topic>Isotopes</topic><topic>Mountains</topic><topic>Ocean warming</topic><topic>Oxygen</topic><topic>Precipitation</topic><topic>Precipitation data</topic><topic>Rainfall</topic><topic>Rainfall amount</topic><topic>Records</topic><topic>River basins</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>Stable isotopes</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Upper atmosphere</topic><topic>Variability</topic><topic>Walker circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, A M</creatorcontrib><creatorcontrib>Thompson, L G</creatorcontrib><creatorcontrib>Davis, M</creatorcontrib><creatorcontrib>E Mosley‐Thompson</creatorcontrib><creatorcontrib>Beaudon, E</creatorcontrib><creatorcontrib>Kenny, D</creatorcontrib><creatorcontrib>P‐N Lin</creatorcontrib><creatorcontrib>R Sierra‐Hernández</creatorcontrib><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, A M</au><au>Thompson, L G</au><au>Davis, M</au><au>E Mosley‐Thompson</au><au>Beaudon, E</au><au>Kenny, D</au><au>P‐N Lin</au><au>R Sierra‐Hernández</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2023-10-16</date><risdate>2023</risdate><volume>128</volume><issue>19</issue><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023JD039006</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2023-10, Vol.128 (19) |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_2874511148 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Archives & records Atmospheric circulation Atmospheric temperature Climate Climate variability Climatic analysis Climatic data Cores Correlation analysis Datasets Earth El Nino El Nino phenomena Fractionation Geophysics Hydroclimate Hydrologic data Hydrology Ice Ice cores Isotopes Mountains Ocean warming Oxygen Precipitation Precipitation data Rainfall Rainfall amount Records River basins Sea surface Sea surface temperature Southern Oscillation Stable isotopes Statistical significance Statistics Surface temperature Temperature Temperature changes Upper atmosphere Variability Walker circulation |
title | Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drivers%20of%20%CE%B418O%20Variability%20Preserved%20in%20Ice%20Cores%20From%20Earth's%20Highest%20Tropical%20Mountain&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Weber,%20A%20M&rft.date=2023-10-16&rft.volume=128&rft.issue=19&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2023JD039006&rft_dat=%3Cproquest%3E2874511148%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874511148&rft_id=info:pmid/&rfr_iscdi=true |