Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain

In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2023-10, Vol.128 (19)
Hauptverfasser: Weber, A M, Thompson, L G, Davis, M, E Mosley‐Thompson, Beaudon, E, Kenny, D, P‐N Lin, R Sierra‐Hernández
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Journal of geophysical research. Atmospheres
container_volume 128
creator Weber, A M
Thompson, L G
Davis, M
E Mosley‐Thompson
Beaudon, E
Kenny, D
P‐N Lin
R Sierra‐Hernández
description In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.
doi_str_mv 10.1029/2023JD039006
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2874511148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874511148</sourcerecordid><originalsourceid>FETCH-LOGICAL-p151t-b57ed9f24ae5f96df9e73a4008c14bf34f6e93294d75fb35647b8c80ef05ea83</originalsourceid><addsrcrecordid>eNo9js1Kw0AcxBdRsNTefIAFD56i-5nsHiVtbaVSD0HES9kk_7VbYjbuJgXfy-fwmQwozmWGOcz8ELqk5IYSpm8ZYfxhTrgmJD1BE0ZTnSit09P_nL2co1mMBzJKES6kmKDXeXBHCBF7i7-_qNriZxOcKV3j-k_8FCBCOEKNXYvXFeDcjw1eBv-OFyb0--uIV-5tD7HHRfCdq0yDH_3Q9sa1F-jMmibC7M-nqFguinyVbLb36_xuk3RU0j4pZQa1tkwYkFantdWQcSNGxIqK0nJhU9CcaVFn0pZcpiIrVaUIWCLBKD5FV7-zXfAfw0iyO_ghtOPjjqlMSEqpUPwH0AhUWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874511148</pqid></control><display><type>article</type><title>Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Weber, A M ; Thompson, L G ; Davis, M ; E Mosley‐Thompson ; Beaudon, E ; Kenny, D ; P‐N Lin ; R Sierra‐Hernández</creator><creatorcontrib>Weber, A M ; Thompson, L G ; Davis, M ; E Mosley‐Thompson ; Beaudon, E ; Kenny, D ; P‐N Lin ; R Sierra‐Hernández</creatorcontrib><description>In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2023JD039006</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Archives &amp; records ; Atmospheric circulation ; Atmospheric temperature ; Climate ; Climate variability ; Climatic analysis ; Climatic data ; Cores ; Correlation analysis ; Datasets ; Earth ; El Nino ; El Nino phenomena ; Fractionation ; Geophysics ; Hydroclimate ; Hydrologic data ; Hydrology ; Ice ; Ice cores ; Isotopes ; Mountains ; Ocean warming ; Oxygen ; Precipitation ; Precipitation data ; Rainfall ; Rainfall amount ; Records ; River basins ; Sea surface ; Sea surface temperature ; Southern Oscillation ; Stable isotopes ; Statistical significance ; Statistics ; Surface temperature ; Temperature ; Temperature changes ; Upper atmosphere ; Variability ; Walker circulation</subject><ispartof>Journal of geophysical research. Atmospheres, 2023-10, Vol.128 (19)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Weber, A M</creatorcontrib><creatorcontrib>Thompson, L G</creatorcontrib><creatorcontrib>Davis, M</creatorcontrib><creatorcontrib>E Mosley‐Thompson</creatorcontrib><creatorcontrib>Beaudon, E</creatorcontrib><creatorcontrib>Kenny, D</creatorcontrib><creatorcontrib>P‐N Lin</creatorcontrib><creatorcontrib>R Sierra‐Hernández</creatorcontrib><title>Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain</title><title>Journal of geophysical research. Atmospheres</title><description>In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.</description><subject>Archives &amp; records</subject><subject>Atmospheric circulation</subject><subject>Atmospheric temperature</subject><subject>Climate</subject><subject>Climate variability</subject><subject>Climatic analysis</subject><subject>Climatic data</subject><subject>Cores</subject><subject>Correlation analysis</subject><subject>Datasets</subject><subject>Earth</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>Fractionation</subject><subject>Geophysics</subject><subject>Hydroclimate</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Ice</subject><subject>Ice cores</subject><subject>Isotopes</subject><subject>Mountains</subject><subject>Ocean warming</subject><subject>Oxygen</subject><subject>Precipitation</subject><subject>Precipitation data</subject><subject>Rainfall</subject><subject>Rainfall amount</subject><subject>Records</subject><subject>River basins</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>Stable isotopes</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Upper atmosphere</subject><subject>Variability</subject><subject>Walker circulation</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9js1Kw0AcxBdRsNTefIAFD56i-5nsHiVtbaVSD0HES9kk_7VbYjbuJgXfy-fwmQwozmWGOcz8ELqk5IYSpm8ZYfxhTrgmJD1BE0ZTnSit09P_nL2co1mMBzJKES6kmKDXeXBHCBF7i7-_qNriZxOcKV3j-k_8FCBCOEKNXYvXFeDcjw1eBv-OFyb0--uIV-5tD7HHRfCdq0yDH_3Q9sa1F-jMmibC7M-nqFguinyVbLb36_xuk3RU0j4pZQa1tkwYkFantdWQcSNGxIqK0nJhU9CcaVFn0pZcpiIrVaUIWCLBKD5FV7-zXfAfw0iyO_ghtOPjjqlMSEqpUPwH0AhUWQ</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Weber, A M</creator><creator>Thompson, L G</creator><creator>Davis, M</creator><creator>E Mosley‐Thompson</creator><creator>Beaudon, E</creator><creator>Kenny, D</creator><creator>P‐N Lin</creator><creator>R Sierra‐Hernández</creator><general>Blackwell Publishing Ltd</general><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20231016</creationdate><title>Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain</title><author>Weber, A M ; Thompson, L G ; Davis, M ; E Mosley‐Thompson ; Beaudon, E ; Kenny, D ; P‐N Lin ; R Sierra‐Hernández</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p151t-b57ed9f24ae5f96df9e73a4008c14bf34f6e93294d75fb35647b8c80ef05ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Archives &amp; records</topic><topic>Atmospheric circulation</topic><topic>Atmospheric temperature</topic><topic>Climate</topic><topic>Climate variability</topic><topic>Climatic analysis</topic><topic>Climatic data</topic><topic>Cores</topic><topic>Correlation analysis</topic><topic>Datasets</topic><topic>Earth</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>Fractionation</topic><topic>Geophysics</topic><topic>Hydroclimate</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Ice</topic><topic>Ice cores</topic><topic>Isotopes</topic><topic>Mountains</topic><topic>Ocean warming</topic><topic>Oxygen</topic><topic>Precipitation</topic><topic>Precipitation data</topic><topic>Rainfall</topic><topic>Rainfall amount</topic><topic>Records</topic><topic>River basins</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>Stable isotopes</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Upper atmosphere</topic><topic>Variability</topic><topic>Walker circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, A M</creatorcontrib><creatorcontrib>Thompson, L G</creatorcontrib><creatorcontrib>Davis, M</creatorcontrib><creatorcontrib>E Mosley‐Thompson</creatorcontrib><creatorcontrib>Beaudon, E</creatorcontrib><creatorcontrib>Kenny, D</creatorcontrib><creatorcontrib>P‐N Lin</creatorcontrib><creatorcontrib>R Sierra‐Hernández</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, A M</au><au>Thompson, L G</au><au>Davis, M</au><au>E Mosley‐Thompson</au><au>Beaudon, E</au><au>Kenny, D</au><au>P‐N Lin</au><au>R Sierra‐Hernández</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2023-10-16</date><risdate>2023</risdate><volume>128</volume><issue>19</issue><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023JD039006</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2023-10, Vol.128 (19)
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_2874511148
source Access via Wiley Online Library; Alma/SFX Local Collection
subjects Archives & records
Atmospheric circulation
Atmospheric temperature
Climate
Climate variability
Climatic analysis
Climatic data
Cores
Correlation analysis
Datasets
Earth
El Nino
El Nino phenomena
Fractionation
Geophysics
Hydroclimate
Hydrologic data
Hydrology
Ice
Ice cores
Isotopes
Mountains
Ocean warming
Oxygen
Precipitation
Precipitation data
Rainfall
Rainfall amount
Records
River basins
Sea surface
Sea surface temperature
Southern Oscillation
Stable isotopes
Statistical significance
Statistics
Surface temperature
Temperature
Temperature changes
Upper atmosphere
Variability
Walker circulation
title Drivers of δ18O Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drivers%20of%20%CE%B418O%20Variability%20Preserved%20in%20Ice%20Cores%20From%20Earth's%20Highest%20Tropical%20Mountain&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Weber,%20A%20M&rft.date=2023-10-16&rft.volume=128&rft.issue=19&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2023JD039006&rft_dat=%3Cproquest%3E2874511148%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874511148&rft_id=info:pmid/&rfr_iscdi=true