Z-Pinning Techniques to Improve Energy Absorption Capabilities of CFRP Tubular Structures

This paper investigates the use of z-pinning reinforcement in CFRP tubular structures under axial impact, to find the optimum design to increase the specific energy absorption (SEA). Through-the-thickness reinforcement is known as a technique to improve integrity and fracture resistance in composite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied composite materials 2023-10, Vol.30 (5), p.1529-1545
Hauptverfasser: Ramírez, J. G., Ghasemnejad, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1545
container_issue 5
container_start_page 1529
container_title Applied composite materials
container_volume 30
creator Ramírez, J. G.
Ghasemnejad, H.
description This paper investigates the use of z-pinning reinforcement in CFRP tubular structures under axial impact, to find the optimum design to increase the specific energy absorption (SEA). Through-the-thickness reinforcement is known as a technique to improve integrity and fracture resistance in composite materials and structures. Manufacturing and testing of unpinned tubular structures are conducted to create a base model to validate numerical results. A finite element model of the tube under dynamic impact is developed using LS-DYNA software, conducting parametric studies, mesh sensitivity analysis and trigger modelling research. The proposed z-pinning modelling techniques are researched, and an energy-based contact model is proposed to model pinned areas. Five different designs of reinforced tubes are designed and analysed, to find the optimum z-pinned pattern in terms of SEA. The novelties of this research indicate that z-pinning can improve the SEA and reduce the initial collapse load during crushing. Our results indicate that the vertical banded design shows the highest SEA and least initial collapse load values in comparison with the unpinned specimen, which indicates an improvement in the crashworthiness parameters of z-pinned composite tubes.
doi_str_mv 10.1007/s10443-023-10132-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874055319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874055319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9d26209baefbe4dcafb61ace0c612f6be46ad6998cd7805311aad1471fdf5c063</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19F8tElzOcqmg4FDJ6g3IU3TmbG1NWkd-_dmVvDOqwOH53nP4QXgmuBbgrG4CwQnCUOYMkQwYRTtT8CIpIKhJJPiFIywpBKRTL6eg4sQNhjjTHAxAm_vaOnq2tVruLLmo3afvQ2wa-B81_rmy8Jpbf36ACdFaHzbuaaGuW514bauc5FsKpjPnpZw1Rf9Vnv43PnedL234RKcVXob7NXvHIOX2XSVP6DF4_08nyyQYSTpkCwpp1gW2laFTUqjq4ITbSw2nNCKxx3XJZcyM6XIcMoI0bokiSBVWaUGczYGN0Nu_Pf4fKc2Te_reFLRTCQ4jY6MFB0o45sQvK1U691O-4MiWB0rVEOFKlaofipU-yixQQoRrtfW_0X_Y30D6fV10g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874055319</pqid></control><display><type>article</type><title>Z-Pinning Techniques to Improve Energy Absorption Capabilities of CFRP Tubular Structures</title><source>SpringerNature Journals</source><creator>Ramírez, J. G. ; Ghasemnejad, H.</creator><creatorcontrib>Ramírez, J. G. ; Ghasemnejad, H.</creatorcontrib><description>This paper investigates the use of z-pinning reinforcement in CFRP tubular structures under axial impact, to find the optimum design to increase the specific energy absorption (SEA). Through-the-thickness reinforcement is known as a technique to improve integrity and fracture resistance in composite materials and structures. Manufacturing and testing of unpinned tubular structures are conducted to create a base model to validate numerical results. A finite element model of the tube under dynamic impact is developed using LS-DYNA software, conducting parametric studies, mesh sensitivity analysis and trigger modelling research. The proposed z-pinning modelling techniques are researched, and an energy-based contact model is proposed to model pinned areas. Five different designs of reinforced tubes are designed and analysed, to find the optimum z-pinned pattern in terms of SEA. The novelties of this research indicate that z-pinning can improve the SEA and reduce the initial collapse load during crushing. Our results indicate that the vertical banded design shows the highest SEA and least initial collapse load values in comparison with the unpinned specimen, which indicates an improvement in the crashworthiness parameters of z-pinned composite tubes.</description><identifier>ISSN: 0929-189X</identifier><identifier>EISSN: 1573-4897</identifier><identifier>DOI: 10.1007/s10443-023-10132-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Collapse load ; Composite materials ; Crashworthiness ; Design ; Energy absorption ; Finite element method ; Fracture toughness ; Impact strength ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mathematical models ; Modelling ; Parameter sensitivity ; Pinning ; Polymer Sciences ; Sensitivity analysis ; Specific energy ; Tubes</subject><ispartof>Applied composite materials, 2023-10, Vol.30 (5), p.1529-1545</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-9d26209baefbe4dcafb61ace0c612f6be46ad6998cd7805311aad1471fdf5c063</cites><orcidid>0000-0003-2912-8123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10443-023-10132-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10443-023-10132-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Ramírez, J. G.</creatorcontrib><creatorcontrib>Ghasemnejad, H.</creatorcontrib><title>Z-Pinning Techniques to Improve Energy Absorption Capabilities of CFRP Tubular Structures</title><title>Applied composite materials</title><addtitle>Appl Compos Mater</addtitle><description>This paper investigates the use of z-pinning reinforcement in CFRP tubular structures under axial impact, to find the optimum design to increase the specific energy absorption (SEA). Through-the-thickness reinforcement is known as a technique to improve integrity and fracture resistance in composite materials and structures. Manufacturing and testing of unpinned tubular structures are conducted to create a base model to validate numerical results. A finite element model of the tube under dynamic impact is developed using LS-DYNA software, conducting parametric studies, mesh sensitivity analysis and trigger modelling research. The proposed z-pinning modelling techniques are researched, and an energy-based contact model is proposed to model pinned areas. Five different designs of reinforced tubes are designed and analysed, to find the optimum z-pinned pattern in terms of SEA. The novelties of this research indicate that z-pinning can improve the SEA and reduce the initial collapse load during crushing. Our results indicate that the vertical banded design shows the highest SEA and least initial collapse load values in comparison with the unpinned specimen, which indicates an improvement in the crashworthiness parameters of z-pinned composite tubes.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Collapse load</subject><subject>Composite materials</subject><subject>Crashworthiness</subject><subject>Design</subject><subject>Energy absorption</subject><subject>Finite element method</subject><subject>Fracture toughness</subject><subject>Impact strength</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Parameter sensitivity</subject><subject>Pinning</subject><subject>Polymer Sciences</subject><subject>Sensitivity analysis</subject><subject>Specific energy</subject><subject>Tubes</subject><issn>0929-189X</issn><issn>1573-4897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19F8tElzOcqmg4FDJ6g3IU3TmbG1NWkd-_dmVvDOqwOH53nP4QXgmuBbgrG4CwQnCUOYMkQwYRTtT8CIpIKhJJPiFIywpBKRTL6eg4sQNhjjTHAxAm_vaOnq2tVruLLmo3afvQ2wa-B81_rmy8Jpbf36ACdFaHzbuaaGuW514bauc5FsKpjPnpZw1Rf9Vnv43PnedL234RKcVXob7NXvHIOX2XSVP6DF4_08nyyQYSTpkCwpp1gW2laFTUqjq4ITbSw2nNCKxx3XJZcyM6XIcMoI0bokiSBVWaUGczYGN0Nu_Pf4fKc2Te_reFLRTCQ4jY6MFB0o45sQvK1U691O-4MiWB0rVEOFKlaofipU-yixQQoRrtfW_0X_Y30D6fV10g</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ramírez, J. G.</creator><creator>Ghasemnejad, H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2912-8123</orcidid></search><sort><creationdate>20231001</creationdate><title>Z-Pinning Techniques to Improve Energy Absorption Capabilities of CFRP Tubular Structures</title><author>Ramírez, J. G. ; Ghasemnejad, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9d26209baefbe4dcafb61ace0c612f6be46ad6998cd7805311aad1471fdf5c063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Collapse load</topic><topic>Composite materials</topic><topic>Crashworthiness</topic><topic>Design</topic><topic>Energy absorption</topic><topic>Finite element method</topic><topic>Fracture toughness</topic><topic>Impact strength</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Parameter sensitivity</topic><topic>Pinning</topic><topic>Polymer Sciences</topic><topic>Sensitivity analysis</topic><topic>Specific energy</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez, J. G.</creatorcontrib><creatorcontrib>Ghasemnejad, H.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Applied composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez, J. G.</au><au>Ghasemnejad, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Z-Pinning Techniques to Improve Energy Absorption Capabilities of CFRP Tubular Structures</atitle><jtitle>Applied composite materials</jtitle><stitle>Appl Compos Mater</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>30</volume><issue>5</issue><spage>1529</spage><epage>1545</epage><pages>1529-1545</pages><issn>0929-189X</issn><eissn>1573-4897</eissn><abstract>This paper investigates the use of z-pinning reinforcement in CFRP tubular structures under axial impact, to find the optimum design to increase the specific energy absorption (SEA). Through-the-thickness reinforcement is known as a technique to improve integrity and fracture resistance in composite materials and structures. Manufacturing and testing of unpinned tubular structures are conducted to create a base model to validate numerical results. A finite element model of the tube under dynamic impact is developed using LS-DYNA software, conducting parametric studies, mesh sensitivity analysis and trigger modelling research. The proposed z-pinning modelling techniques are researched, and an energy-based contact model is proposed to model pinned areas. Five different designs of reinforced tubes are designed and analysed, to find the optimum z-pinned pattern in terms of SEA. The novelties of this research indicate that z-pinning can improve the SEA and reduce the initial collapse load during crushing. Our results indicate that the vertical banded design shows the highest SEA and least initial collapse load values in comparison with the unpinned specimen, which indicates an improvement in the crashworthiness parameters of z-pinned composite tubes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10443-023-10132-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2912-8123</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0929-189X
ispartof Applied composite materials, 2023-10, Vol.30 (5), p.1529-1545
issn 0929-189X
1573-4897
language eng
recordid cdi_proquest_journals_2874055319
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Collapse load
Composite materials
Crashworthiness
Design
Energy absorption
Finite element method
Fracture toughness
Impact strength
Industrial Chemistry/Chemical Engineering
Materials Science
Mathematical models
Modelling
Parameter sensitivity
Pinning
Polymer Sciences
Sensitivity analysis
Specific energy
Tubes
title Z-Pinning Techniques to Improve Energy Absorption Capabilities of CFRP Tubular Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Z-Pinning%20Techniques%20to%20Improve%20Energy%20Absorption%20Capabilities%20of%20CFRP%20Tubular%20Structures&rft.jtitle=Applied%20composite%20materials&rft.au=Ram%C3%ADrez,%20J.%20G.&rft.date=2023-10-01&rft.volume=30&rft.issue=5&rft.spage=1529&rft.epage=1545&rft.pages=1529-1545&rft.issn=0929-189X&rft.eissn=1573-4897&rft_id=info:doi/10.1007/s10443-023-10132-w&rft_dat=%3Cproquest_cross%3E2874055319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874055319&rft_id=info:pmid/&rfr_iscdi=true