Discovering novel soliton solutions for (3+1)-modified fractional Zakharov–Kuznetsov equation in electrical engineering through an analytical approach
In recent years, the modified Extended Direct Algebraic Method (mEDAM) has demonstrated to be an effective method for finding novel soliton solutions to nonlinear Fractional Partial Differential Equations that appear in the fields of science and engineering. In this study, mEDAM is used to explore s...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2023-12, Vol.55 (13), Article 1149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Optical and quantum electronics |
container_volume | 55 |
creator | Alqhtani, Manal Saad, Khaled M. Shah, Rasool Hamanah, Waleed M. |
description | In recent years, the modified Extended Direct Algebraic Method (mEDAM) has demonstrated to be an effective method for finding novel soliton solutions to nonlinear Fractional Partial Differential Equations that appear in the fields of science and engineering. In this study, mEDAM is used to explore special soliton solutions for the (3+1)-Fractional Modified Zakharov–Kuznetsov Equation (FMZKE) arising in electrical engineering which is first mathematically modeled through the implementation of Kirchhoff’s Law to the nonlinear electrical transmission line circuit. The wave behaviours of various soliton solutions are graphically represented using three-dimensional (3D) graphs which provide a clear and thorough explanation of the usefulness and high performance of the suggested method. The acquired results offer helpful insights to the behavior and dynamics of the FMZKE, leading to a more deeply comprehending of the model and its applications in various fields. |
doi_str_mv | 10.1007/s11082-023-05407-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873978519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873978519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-250af34cfa1ebd920e4d557876a121a6a4d230c6560e72355a82b5f6ce064f363</originalsourceid><addsrcrecordid>eNp9UV1rFTEQDaLgtfUP-BTwRZHYSbLZ7D5K6xcWfFEQX8I0m9ybuk1uk90L7ZP_wRd_n7_EbLfgmzAwA3POnJk5hDzj8JoD6JPCOXSCgZAMVAOaiQdkw5UWrOP620OyAQkt63rePyZPSrkEgLZRsCG_z0Kx6eByiFsaazHSksYwpbjkeQopFupTpi_kK_6SXaUh-OAG6jPapYkj_Y4_dpjT4c_PX5_m2-imkg7UXc-49GmI1I3OTjnYinVxG6Jb1aZdTvN2RzHWwPFmukPgfp8T2t0xeeRxLO7pfT4iX9-9_XL6gZ1_fv_x9M05s5L3ExMK0MvGeuTuYugFuGZQSne6RS44ttgMQoJtVQtOC6kUduJC-da6-gAvW3lEnq9zq-z17MpkLtOc6z7FiE7LXneK9xUlVpTNqZTsvNnncIX5xnAwiwNmdcBUB8ydA0ZUklxJZb8c7PK_0f9h_QUdx41D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873978519</pqid></control><display><type>article</type><title>Discovering novel soliton solutions for (3+1)-modified fractional Zakharov–Kuznetsov equation in electrical engineering through an analytical approach</title><source>SpringerLink Journals</source><creator>Alqhtani, Manal ; Saad, Khaled M. ; Shah, Rasool ; Hamanah, Waleed M.</creator><creatorcontrib>Alqhtani, Manal ; Saad, Khaled M. ; Shah, Rasool ; Hamanah, Waleed M.</creatorcontrib><description>In recent years, the modified Extended Direct Algebraic Method (mEDAM) has demonstrated to be an effective method for finding novel soliton solutions to nonlinear Fractional Partial Differential Equations that appear in the fields of science and engineering. In this study, mEDAM is used to explore special soliton solutions for the (3+1)-Fractional Modified Zakharov–Kuznetsov Equation (FMZKE) arising in electrical engineering which is first mathematically modeled through the implementation of Kirchhoff’s Law to the nonlinear electrical transmission line circuit. The wave behaviours of various soliton solutions are graphically represented using three-dimensional (3D) graphs which provide a clear and thorough explanation of the usefulness and high performance of the suggested method. The acquired results offer helpful insights to the behavior and dynamics of the FMZKE, leading to a more deeply comprehending of the model and its applications in various fields.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-023-05407-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Electrical Engineering ; Graphical representations ; Lasers ; Optical Devices ; Optics ; Partial differential equations ; Photonics ; Physics ; Physics and Astronomy ; Solitary waves ; Transmission lines</subject><ispartof>Optical and quantum electronics, 2023-12, Vol.55 (13), Article 1149</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-250af34cfa1ebd920e4d557876a121a6a4d230c6560e72355a82b5f6ce064f363</citedby><cites>FETCH-LOGICAL-c319t-250af34cfa1ebd920e4d557876a121a6a4d230c6560e72355a82b5f6ce064f363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-023-05407-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-023-05407-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alqhtani, Manal</creatorcontrib><creatorcontrib>Saad, Khaled M.</creatorcontrib><creatorcontrib>Shah, Rasool</creatorcontrib><creatorcontrib>Hamanah, Waleed M.</creatorcontrib><title>Discovering novel soliton solutions for (3+1)-modified fractional Zakharov–Kuznetsov equation in electrical engineering through an analytical approach</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In recent years, the modified Extended Direct Algebraic Method (mEDAM) has demonstrated to be an effective method for finding novel soliton solutions to nonlinear Fractional Partial Differential Equations that appear in the fields of science and engineering. In this study, mEDAM is used to explore special soliton solutions for the (3+1)-Fractional Modified Zakharov–Kuznetsov Equation (FMZKE) arising in electrical engineering which is first mathematically modeled through the implementation of Kirchhoff’s Law to the nonlinear electrical transmission line circuit. The wave behaviours of various soliton solutions are graphically represented using three-dimensional (3D) graphs which provide a clear and thorough explanation of the usefulness and high performance of the suggested method. The acquired results offer helpful insights to the behavior and dynamics of the FMZKE, leading to a more deeply comprehending of the model and its applications in various fields.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Graphical representations</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Partial differential equations</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solitary waves</subject><subject>Transmission lines</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UV1rFTEQDaLgtfUP-BTwRZHYSbLZ7D5K6xcWfFEQX8I0m9ybuk1uk90L7ZP_wRd_n7_EbLfgmzAwA3POnJk5hDzj8JoD6JPCOXSCgZAMVAOaiQdkw5UWrOP620OyAQkt63rePyZPSrkEgLZRsCG_z0Kx6eByiFsaazHSksYwpbjkeQopFupTpi_kK_6SXaUh-OAG6jPapYkj_Y4_dpjT4c_PX5_m2-imkg7UXc-49GmI1I3OTjnYinVxG6Jb1aZdTvN2RzHWwPFmukPgfp8T2t0xeeRxLO7pfT4iX9-9_XL6gZ1_fv_x9M05s5L3ExMK0MvGeuTuYugFuGZQSne6RS44ttgMQoJtVQtOC6kUduJC-da6-gAvW3lEnq9zq-z17MpkLtOc6z7FiE7LXneK9xUlVpTNqZTsvNnncIX5xnAwiwNmdcBUB8ydA0ZUklxJZb8c7PK_0f9h_QUdx41D</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Alqhtani, Manal</creator><creator>Saad, Khaled M.</creator><creator>Shah, Rasool</creator><creator>Hamanah, Waleed M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Discovering novel soliton solutions for (3+1)-modified fractional Zakharov–Kuznetsov equation in electrical engineering through an analytical approach</title><author>Alqhtani, Manal ; Saad, Khaled M. ; Shah, Rasool ; Hamanah, Waleed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-250af34cfa1ebd920e4d557876a121a6a4d230c6560e72355a82b5f6ce064f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Graphical representations</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Partial differential equations</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solitary waves</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alqhtani, Manal</creatorcontrib><creatorcontrib>Saad, Khaled M.</creatorcontrib><creatorcontrib>Shah, Rasool</creatorcontrib><creatorcontrib>Hamanah, Waleed M.</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alqhtani, Manal</au><au>Saad, Khaled M.</au><au>Shah, Rasool</au><au>Hamanah, Waleed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering novel soliton solutions for (3+1)-modified fractional Zakharov–Kuznetsov equation in electrical engineering through an analytical approach</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>55</volume><issue>13</issue><artnum>1149</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In recent years, the modified Extended Direct Algebraic Method (mEDAM) has demonstrated to be an effective method for finding novel soliton solutions to nonlinear Fractional Partial Differential Equations that appear in the fields of science and engineering. In this study, mEDAM is used to explore special soliton solutions for the (3+1)-Fractional Modified Zakharov–Kuznetsov Equation (FMZKE) arising in electrical engineering which is first mathematically modeled through the implementation of Kirchhoff’s Law to the nonlinear electrical transmission line circuit. The wave behaviours of various soliton solutions are graphically represented using three-dimensional (3D) graphs which provide a clear and thorough explanation of the usefulness and high performance of the suggested method. The acquired results offer helpful insights to the behavior and dynamics of the FMZKE, leading to a more deeply comprehending of the model and its applications in various fields.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-023-05407-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2023-12, Vol.55 (13), Article 1149 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_2873978519 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Computer Communication Networks Electrical Engineering Graphical representations Lasers Optical Devices Optics Partial differential equations Photonics Physics Physics and Astronomy Solitary waves Transmission lines |
title | Discovering novel soliton solutions for (3+1)-modified fractional Zakharov–Kuznetsov equation in electrical engineering through an analytical approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20novel%20soliton%20solutions%20for%20(3+1)-modified%20fractional%20Zakharov%E2%80%93Kuznetsov%20equation%20in%20electrical%20engineering%20through%20an%20analytical%20approach&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Alqhtani,%20Manal&rft.date=2023-12-01&rft.volume=55&rft.issue=13&rft.artnum=1149&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-023-05407-2&rft_dat=%3Cproquest_cross%3E2873978519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873978519&rft_id=info:pmid/&rfr_iscdi=true |