Neighboring Optimal Guidance in Bang Bang Control with Target
The purpose of this paper is to present a Neighboring Optimal Guidance algorithm capable of driving a dynamical system along an optimal trajectory to a target when the Hamiltonian fails to satisfy the strict Legendre condition. Similar problems are associated with saturated and bang–bang controls as...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2023-10, Vol.199 (1), p.310-336 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 1 |
container_start_page | 310 |
container_title | Journal of optimization theory and applications |
container_volume | 199 |
creator | Mazzini, Leonardo |
description | The purpose of this paper is to present a Neighboring Optimal Guidance algorithm capable of driving a dynamical system along an optimal trajectory to a target when the Hamiltonian fails to satisfy the strict Legendre condition. Similar problems are associated with saturated and bang–bang controls as, for instance, in the case of low thrust orbit transfer problems. The approach is based on a new formulation of the second-order sufficient conditions for optimality—introduced by the author—which make tractable, problems with irregular Hamiltonians. Effectiveness of the guidance scheme proposed in this work is successfully tested on a space mission scenario, i.e. Neighboring Optimal Guidance in a low-thrust orbit transfer about Earth. |
doi_str_mv | 10.1007/s10957-023-02286-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873840377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873840377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2f5e68e1496d59f12523923d665b8fb6db4e7f3b2bb356de491165acd405df9b3</originalsourceid><addsrcrecordid>eNp9kDtPwzAQxy0EEqHwBZgiMRv8iF8DA1RQkCq6lNmKYztNFZJgJ0J8e9wGiY3h7qS7-9_jB8A1RrcYIXEXMVJMQERoMiI5xCcgw0xQSKSQpyBDKQ0poeocXMS4RwgpKYoM3L-5pt6ZPjRdnW-Gsfko23w1NbbsKpc3Xf5YpsLRLftuDH2bfzXjLt-WoXbjJTjzZRvd1W9cgPfnp-3yBa43q9flwxpWFKsREs8clw4XilumPCYsHUKo5ZwZ6Q23pnDCU0OMoYxbVyiMOSsrWyBmvTJ0AW7muUPoPycXR73vp9CllTr9R2WBqBCpi8xdVehjDM7rIaR_wrfGSB8w6RmTTpj0EZPGSURnURwODFz4G_2P6gd6L2kt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873840377</pqid></control><display><type>article</type><title>Neighboring Optimal Guidance in Bang Bang Control with Target</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mazzini, Leonardo</creator><creatorcontrib>Mazzini, Leonardo</creatorcontrib><description>The purpose of this paper is to present a Neighboring Optimal Guidance algorithm capable of driving a dynamical system along an optimal trajectory to a target when the Hamiltonian fails to satisfy the strict Legendre condition. Similar problems are associated with saturated and bang–bang controls as, for instance, in the case of low thrust orbit transfer problems. The approach is based on a new formulation of the second-order sufficient conditions for optimality—introduced by the author—which make tractable, problems with irregular Hamiltonians. Effectiveness of the guidance scheme proposed in this work is successfully tested on a space mission scenario, i.e. Neighboring Optimal Guidance in a low-thrust orbit transfer about Earth.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-023-02286-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Bolza problems ; Calculus of Variations and Optimal Control; Optimization ; Engineering ; Hamiltonian functions ; Low thrust ; Mathematics ; Mathematics and Statistics ; Off-on control ; Operations Research/Decision Theory ; Optimization ; Space missions ; Theory of Computation ; Trajectory optimization</subject><ispartof>Journal of optimization theory and applications, 2023-10, Vol.199 (1), p.310-336</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2f5e68e1496d59f12523923d665b8fb6db4e7f3b2bb356de491165acd405df9b3</citedby><cites>FETCH-LOGICAL-c319t-2f5e68e1496d59f12523923d665b8fb6db4e7f3b2bb356de491165acd405df9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-023-02286-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-023-02286-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mazzini, Leonardo</creatorcontrib><title>Neighboring Optimal Guidance in Bang Bang Control with Target</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>The purpose of this paper is to present a Neighboring Optimal Guidance algorithm capable of driving a dynamical system along an optimal trajectory to a target when the Hamiltonian fails to satisfy the strict Legendre condition. Similar problems are associated with saturated and bang–bang controls as, for instance, in the case of low thrust orbit transfer problems. The approach is based on a new formulation of the second-order sufficient conditions for optimality—introduced by the author—which make tractable, problems with irregular Hamiltonians. Effectiveness of the guidance scheme proposed in this work is successfully tested on a space mission scenario, i.e. Neighboring Optimal Guidance in a low-thrust orbit transfer about Earth.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Bolza problems</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Engineering</subject><subject>Hamiltonian functions</subject><subject>Low thrust</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Off-on control</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Space missions</subject><subject>Theory of Computation</subject><subject>Trajectory optimization</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDtPwzAQxy0EEqHwBZgiMRv8iF8DA1RQkCq6lNmKYztNFZJgJ0J8e9wGiY3h7qS7-9_jB8A1RrcYIXEXMVJMQERoMiI5xCcgw0xQSKSQpyBDKQ0poeocXMS4RwgpKYoM3L-5pt6ZPjRdnW-Gsfko23w1NbbsKpc3Xf5YpsLRLftuDH2bfzXjLt-WoXbjJTjzZRvd1W9cgPfnp-3yBa43q9flwxpWFKsREs8clw4XilumPCYsHUKo5ZwZ6Q23pnDCU0OMoYxbVyiMOSsrWyBmvTJ0AW7muUPoPycXR73vp9CllTr9R2WBqBCpi8xdVehjDM7rIaR_wrfGSB8w6RmTTpj0EZPGSURnURwODFz4G_2P6gd6L2kt</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Mazzini, Leonardo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20231001</creationdate><title>Neighboring Optimal Guidance in Bang Bang Control with Target</title><author>Mazzini, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2f5e68e1496d59f12523923d665b8fb6db4e7f3b2bb356de491165acd405df9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Bolza problems</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Engineering</topic><topic>Hamiltonian functions</topic><topic>Low thrust</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Off-on control</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Space missions</topic><topic>Theory of Computation</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazzini, Leonardo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazzini, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neighboring Optimal Guidance in Bang Bang Control with Target</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>199</volume><issue>1</issue><spage>310</spage><epage>336</epage><pages>310-336</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>The purpose of this paper is to present a Neighboring Optimal Guidance algorithm capable of driving a dynamical system along an optimal trajectory to a target when the Hamiltonian fails to satisfy the strict Legendre condition. Similar problems are associated with saturated and bang–bang controls as, for instance, in the case of low thrust orbit transfer problems. The approach is based on a new formulation of the second-order sufficient conditions for optimality—introduced by the author—which make tractable, problems with irregular Hamiltonians. Effectiveness of the guidance scheme proposed in this work is successfully tested on a space mission scenario, i.e. Neighboring Optimal Guidance in a low-thrust orbit transfer about Earth.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-023-02286-1</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2023-10, Vol.199 (1), p.310-336 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2873840377 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Applications of Mathematics Bolza problems Calculus of Variations and Optimal Control Optimization Engineering Hamiltonian functions Low thrust Mathematics Mathematics and Statistics Off-on control Operations Research/Decision Theory Optimization Space missions Theory of Computation Trajectory optimization |
title | Neighboring Optimal Guidance in Bang Bang Control with Target |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neighboring%20Optimal%20Guidance%20in%20Bang%20Bang%20Control%20with%20Target&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Mazzini,%20Leonardo&rft.date=2023-10-01&rft.volume=199&rft.issue=1&rft.spage=310&rft.epage=336&rft.pages=310-336&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-023-02286-1&rft_dat=%3Cproquest_cross%3E2873840377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873840377&rft_id=info:pmid/&rfr_iscdi=true |