Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents

In this paper, a global L ω s , t -bound for the gradient of weak solutions to non-uniformly nonlinear elliptic equations with variable exponents is presented. The main difficulties arise from variable ( p ( · ) , q ( · ) ) -growth conditions can be handled by standard techniques. Under the appropri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2023-11, Vol.172 (3-4), p.1227-1244
Hauptverfasser: Tran, Minh-Phuong, Nguyen, Thanh-Nhan, Pham, Le-Tuyet-Nhi, Dang, Thi-Thanh-Truc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1244
container_issue 3-4
container_start_page 1227
container_title Manuscripta mathematica
container_volume 172
creator Tran, Minh-Phuong
Nguyen, Thanh-Nhan
Pham, Le-Tuyet-Nhi
Dang, Thi-Thanh-Truc
description In this paper, a global L ω s , t -bound for the gradient of weak solutions to non-uniformly nonlinear elliptic equations with variable exponents is presented. The main difficulties arise from variable ( p ( · ) , q ( · ) ) -growth conditions can be handled by standard techniques. Under the appropriated assumptions and minimal regularity on initial data of the problem, weighted regularity estimates in the frame of Lorentz spaces will be established. Furthermore, the use of level-set inequalities on distribution functions is also imposed to obtained the norm bounds in a wide range of generalized Lebesgue spaces such as Lorentz, Lorentz-Morrey or Orlicz spaces, etc.
doi_str_mv 10.1007/s00229-022-01452-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873784417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873784417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4aeeeec58f7975f34ad91b69204bdcea0478bec052f82d870afff706876aa34c3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBn7BwR4iVV4sLjaDmO3aZKk2CnQPl6FoLEjT3MruWZ8XoQOmX0nFGqLzKlnJcEgFAmFSdqD82YFJwwbdQ-msG9Irxg7BAd5bymwBJazNDzS2iWqzHUeNGn0I2fOOSx2bgxZBz7hLu-I9uugXHT7nBo22YYG4-H1Fdt2GT83owr_OZS4-CMw8fQd-CSj9FBdG0OJ799jp5urh-v7sji4fb-6nJBvGDlSKQLUF6ZqEutopCuLllVlJzKqvbBUalNFTxVPBpeG01djFHTwujCOSG9mKOzyRcWet3C6nbdb1MHT1putNBGSqaBxSeWT33OKUQ7JPhj2llG7Xd-dsrPAtif_KwCkZhEGcjdMqQ_639UX_aedO8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873784417</pqid></control><display><type>article</type><title>Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents</title><source>Springer Nature - Complete Springer Journals</source><creator>Tran, Minh-Phuong ; Nguyen, Thanh-Nhan ; Pham, Le-Tuyet-Nhi ; Dang, Thi-Thanh-Truc</creator><creatorcontrib>Tran, Minh-Phuong ; Nguyen, Thanh-Nhan ; Pham, Le-Tuyet-Nhi ; Dang, Thi-Thanh-Truc</creatorcontrib><description>In this paper, a global L ω s , t -bound for the gradient of weak solutions to non-uniformly nonlinear elliptic equations with variable exponents is presented. The main difficulties arise from variable ( p ( · ) , q ( · ) ) -growth conditions can be handled by standard techniques. Under the appropriated assumptions and minimal regularity on initial data of the problem, weighted regularity estimates in the frame of Lorentz spaces will be established. Furthermore, the use of level-set inequalities on distribution functions is also imposed to obtained the norm bounds in a wide range of generalized Lebesgue spaces such as Lorentz, Lorentz-Morrey or Orlicz spaces, etc.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-022-01452-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Distribution functions ; Elliptic functions ; Estimates ; Exponents ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Regularity ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2023-11, Vol.172 (3-4), p.1227-1244</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4aeeeec58f7975f34ad91b69204bdcea0478bec052f82d870afff706876aa34c3</citedby><cites>FETCH-LOGICAL-c319t-4aeeeec58f7975f34ad91b69204bdcea0478bec052f82d870afff706876aa34c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-022-01452-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-022-01452-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tran, Minh-Phuong</creatorcontrib><creatorcontrib>Nguyen, Thanh-Nhan</creatorcontrib><creatorcontrib>Pham, Le-Tuyet-Nhi</creatorcontrib><creatorcontrib>Dang, Thi-Thanh-Truc</creatorcontrib><title>Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>In this paper, a global L ω s , t -bound for the gradient of weak solutions to non-uniformly nonlinear elliptic equations with variable exponents is presented. The main difficulties arise from variable ( p ( · ) , q ( · ) ) -growth conditions can be handled by standard techniques. Under the appropriated assumptions and minimal regularity on initial data of the problem, weighted regularity estimates in the frame of Lorentz spaces will be established. Furthermore, the use of level-set inequalities on distribution functions is also imposed to obtained the norm bounds in a wide range of generalized Lebesgue spaces such as Lorentz, Lorentz-Morrey or Orlicz spaces, etc.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Distribution functions</subject><subject>Elliptic functions</subject><subject>Estimates</subject><subject>Exponents</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Regularity</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBn7BwR4iVV4sLjaDmO3aZKk2CnQPl6FoLEjT3MruWZ8XoQOmX0nFGqLzKlnJcEgFAmFSdqD82YFJwwbdQ-msG9Irxg7BAd5bymwBJazNDzS2iWqzHUeNGn0I2fOOSx2bgxZBz7hLu-I9uugXHT7nBo22YYG4-H1Fdt2GT83owr_OZS4-CMw8fQd-CSj9FBdG0OJ799jp5urh-v7sji4fb-6nJBvGDlSKQLUF6ZqEutopCuLllVlJzKqvbBUalNFTxVPBpeG01djFHTwujCOSG9mKOzyRcWet3C6nbdb1MHT1putNBGSqaBxSeWT33OKUQ7JPhj2llG7Xd-dsrPAtif_KwCkZhEGcjdMqQ_639UX_aedO8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Tran, Minh-Phuong</creator><creator>Nguyen, Thanh-Nhan</creator><creator>Pham, Le-Tuyet-Nhi</creator><creator>Dang, Thi-Thanh-Truc</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents</title><author>Tran, Minh-Phuong ; Nguyen, Thanh-Nhan ; Pham, Le-Tuyet-Nhi ; Dang, Thi-Thanh-Truc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4aeeeec58f7975f34ad91b69204bdcea0478bec052f82d870afff706876aa34c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Distribution functions</topic><topic>Elliptic functions</topic><topic>Estimates</topic><topic>Exponents</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Regularity</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Minh-Phuong</creatorcontrib><creatorcontrib>Nguyen, Thanh-Nhan</creatorcontrib><creatorcontrib>Pham, Le-Tuyet-Nhi</creatorcontrib><creatorcontrib>Dang, Thi-Thanh-Truc</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Minh-Phuong</au><au>Nguyen, Thanh-Nhan</au><au>Pham, Le-Tuyet-Nhi</au><au>Dang, Thi-Thanh-Truc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>172</volume><issue>3-4</issue><spage>1227</spage><epage>1244</epage><pages>1227-1244</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>In this paper, a global L ω s , t -bound for the gradient of weak solutions to non-uniformly nonlinear elliptic equations with variable exponents is presented. The main difficulties arise from variable ( p ( · ) , q ( · ) ) -growth conditions can be handled by standard techniques. Under the appropriated assumptions and minimal regularity on initial data of the problem, weighted regularity estimates in the frame of Lorentz spaces will be established. Furthermore, the use of level-set inequalities on distribution functions is also imposed to obtained the norm bounds in a wide range of generalized Lebesgue spaces such as Lorentz, Lorentz-Morrey or Orlicz spaces, etc.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-022-01452-5</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2023-11, Vol.172 (3-4), p.1227-1244
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2873784417
source Springer Nature - Complete Springer Journals
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Distribution functions
Elliptic functions
Estimates
Exponents
Geometry
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Regularity
Topological Groups
title Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Lorentz%20estimates%20for%20non-uniformly%20elliptic%20problems%20with%20variable%20exponents&rft.jtitle=Manuscripta%20mathematica&rft.au=Tran,%20Minh-Phuong&rft.date=2023-11-01&rft.volume=172&rft.issue=3-4&rft.spage=1227&rft.epage=1244&rft.pages=1227-1244&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-022-01452-5&rft_dat=%3Cproquest_cross%3E2873784417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873784417&rft_id=info:pmid/&rfr_iscdi=true