On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation

A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2023-08, Vol.59 (8), p.1095-1104
Hauptverfasser: Smirnov, Yu. G., Kondyrev, O. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1104
container_issue 8
container_start_page 1095
container_title Differential equations
container_volume 59
creator Smirnov, Yu. G.
Kondyrev, O. V.
description A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem is reduced to a system of integral equations over the media interface. Calculation formulas for the system of linear algebraic equations obtained after applying the collocation method and numerical results for solving the problem when the domain is a ball with certain transmission conditions are given.
doi_str_mv 10.1134/S0012266123080086
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2873783446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A768047795</galeid><sourcerecordid>A768047795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-c656e523432375d6eb7925c6c73a4905301ce25dc5d01c24ad622d3631271df03</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWD9-gLeA59V8bJLtsZRqBUGhel7SJNum7CZtkgr15j8364oeRHLIzLzzvDMwAFxhdIMxLW8XCGFCOMeEogqhih-BEeaoKnJKj8Gol4tePwVnMW4QQmOB2Qh8PDmY1gbeBaPXvu3gc_BbE9IBSqfhwrdvcmlbm3PfQAkXh5hM18cPLplVkC2c7fYyWe8itIPVS5AudjbGXOztlm0mGh--xLlpuzwnvf9wF-CkkW00l9__OXi9m71M58Xj0_3DdPJYKMpYKhRn3DBCS0qoYJqbpRgTprgSVJZjxCjCyhCmFdM5IqXUnBBNOcVEYN0geg6uB99t8Lu9iane-H1weWRNKkFFRcuS566boWslW1Nb1_gUpMpPm84q70xjc30ieIVKIcYsA3gAVPAxBtPU22A7GQ41RnV_mvrPaTJDBibmXrcy4XeV_6FPijyPow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873783446</pqid></control><display><type>article</type><title>On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation</title><source>SpringerLink Journals</source><creator>Smirnov, Yu. G. ; Kondyrev, O. V.</creator><creatorcontrib>Smirnov, Yu. G. ; Kondyrev, O. V.</creatorcontrib><description>A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem is reduced to a system of integral equations over the media interface. Calculation formulas for the system of linear algebraic equations obtained after applying the collocation method and numerical results for solving the problem when the domain is a ball with certain transmission conditions are given.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266123080086</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Collocation methods ; Difference and Functional Equations ; Electric waves ; Electromagnetic radiation ; Electromagnetic waves ; Electromagnetism ; Existence theorems ; Fredholm equations ; Helmholtz equations ; Integral Equations ; Linear algebra ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Uniqueness theorems ; Wave diffraction</subject><ispartof>Differential equations, 2023-08, Vol.59 (8), p.1095-1104</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-c656e523432375d6eb7925c6c73a4905301ce25dc5d01c24ad622d3631271df03</citedby><cites>FETCH-LOGICAL-c355t-c656e523432375d6eb7925c6c73a4905301ce25dc5d01c24ad622d3631271df03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266123080086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266123080086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><creatorcontrib>Kondyrev, O. V.</creatorcontrib><title>On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem is reduced to a system of integral equations over the media interface. Calculation formulas for the system of linear algebraic equations obtained after applying the collocation method and numerical results for solving the problem when the domain is a ball with certain transmission conditions are given.</description><subject>Boundary value problems</subject><subject>Collocation methods</subject><subject>Difference and Functional Equations</subject><subject>Electric waves</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic waves</subject><subject>Electromagnetism</subject><subject>Existence theorems</subject><subject>Fredholm equations</subject><subject>Helmholtz equations</subject><subject>Integral Equations</subject><subject>Linear algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Uniqueness theorems</subject><subject>Wave diffraction</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhoMoWD9-gLeA59V8bJLtsZRqBUGhel7SJNum7CZtkgr15j8364oeRHLIzLzzvDMwAFxhdIMxLW8XCGFCOMeEogqhih-BEeaoKnJKj8Gol4tePwVnMW4QQmOB2Qh8PDmY1gbeBaPXvu3gc_BbE9IBSqfhwrdvcmlbm3PfQAkXh5hM18cPLplVkC2c7fYyWe8itIPVS5AudjbGXOztlm0mGh--xLlpuzwnvf9wF-CkkW00l9__OXi9m71M58Xj0_3DdPJYKMpYKhRn3DBCS0qoYJqbpRgTprgSVJZjxCjCyhCmFdM5IqXUnBBNOcVEYN0geg6uB99t8Lu9iane-H1weWRNKkFFRcuS566boWslW1Nb1_gUpMpPm84q70xjc30ieIVKIcYsA3gAVPAxBtPU22A7GQ41RnV_mvrPaTJDBibmXrcy4XeV_6FPijyPow</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Smirnov, Yu. G.</creator><creator>Kondyrev, O. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230801</creationdate><title>On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation</title><author>Smirnov, Yu. G. ; Kondyrev, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-c656e523432375d6eb7925c6c73a4905301ce25dc5d01c24ad622d3631271df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Collocation methods</topic><topic>Difference and Functional Equations</topic><topic>Electric waves</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic waves</topic><topic>Electromagnetism</topic><topic>Existence theorems</topic><topic>Fredholm equations</topic><topic>Helmholtz equations</topic><topic>Integral Equations</topic><topic>Linear algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Uniqueness theorems</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><creatorcontrib>Kondyrev, O. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Yu. G.</au><au>Kondyrev, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>59</volume><issue>8</issue><spage>1095</spage><epage>1104</epage><pages>1095-1104</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem is reduced to a system of integral equations over the media interface. Calculation formulas for the system of linear algebraic equations obtained after applying the collocation method and numerical results for solving the problem when the domain is a ball with certain transmission conditions are given.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266123080086</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2023-08, Vol.59 (8), p.1095-1104
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2873783446
source SpringerLink Journals
subjects Boundary value problems
Collocation methods
Difference and Functional Equations
Electric waves
Electromagnetic radiation
Electromagnetic waves
Electromagnetism
Existence theorems
Fredholm equations
Helmholtz equations
Integral Equations
Linear algebra
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Uniqueness theorems
Wave diffraction
title On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Fredholm%20Property%20and%20Solvability%20of%20a%20System%20of%20Integral%20Equations%20in%20the%20Transmission%20Problem%20for%20the%20Helmholtz%20Equation&rft.jtitle=Differential%20equations&rft.au=Smirnov,%20Yu.%20G.&rft.date=2023-08-01&rft.volume=59&rft.issue=8&rft.spage=1095&rft.epage=1104&rft.pages=1095-1104&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266123080086&rft_dat=%3Cgale_proqu%3EA768047795%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873783446&rft_id=info:pmid/&rft_galeid=A768047795&rfr_iscdi=true