On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation
A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem...
Gespeichert in:
Veröffentlicht in: | Differential equations 2023-08, Vol.59 (8), p.1095-1104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1104 |
---|---|
container_issue | 8 |
container_start_page | 1095 |
container_title | Differential equations |
container_volume | 59 |
creator | Smirnov, Yu. G. Kondyrev, O. V. |
description | A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem is reduced to a system of integral equations over the media interface. Calculation formulas for the system of linear algebraic equations obtained after applying the collocation method and numerical results for solving the problem when the domain is a ball with certain transmission conditions are given. |
doi_str_mv | 10.1134/S0012266123080086 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2873783446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A768047795</galeid><sourcerecordid>A768047795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-c656e523432375d6eb7925c6c73a4905301ce25dc5d01c24ad622d3631271df03</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWD9-gLeA59V8bJLtsZRqBUGhel7SJNum7CZtkgr15j8364oeRHLIzLzzvDMwAFxhdIMxLW8XCGFCOMeEogqhih-BEeaoKnJKj8Gol4tePwVnMW4QQmOB2Qh8PDmY1gbeBaPXvu3gc_BbE9IBSqfhwrdvcmlbm3PfQAkXh5hM18cPLplVkC2c7fYyWe8itIPVS5AudjbGXOztlm0mGh--xLlpuzwnvf9wF-CkkW00l9__OXi9m71M58Xj0_3DdPJYKMpYKhRn3DBCS0qoYJqbpRgTprgSVJZjxCjCyhCmFdM5IqXUnBBNOcVEYN0geg6uB99t8Lu9iane-H1weWRNKkFFRcuS566boWslW1Nb1_gUpMpPm84q70xjc30ieIVKIcYsA3gAVPAxBtPU22A7GQ41RnV_mvrPaTJDBibmXrcy4XeV_6FPijyPow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873783446</pqid></control><display><type>article</type><title>On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation</title><source>SpringerLink Journals</source><creator>Smirnov, Yu. G. ; Kondyrev, O. V.</creator><creatorcontrib>Smirnov, Yu. G. ; Kondyrev, O. V.</creatorcontrib><description>A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem is reduced to a system of integral equations over the media interface. Calculation formulas for the system of linear algebraic equations obtained after applying the collocation method and numerical results for solving the problem when the domain is a ball with certain transmission conditions are given.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266123080086</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Collocation methods ; Difference and Functional Equations ; Electric waves ; Electromagnetic radiation ; Electromagnetic waves ; Electromagnetism ; Existence theorems ; Fredholm equations ; Helmholtz equations ; Integral Equations ; Linear algebra ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Uniqueness theorems ; Wave diffraction</subject><ispartof>Differential equations, 2023-08, Vol.59 (8), p.1095-1104</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-c656e523432375d6eb7925c6c73a4905301ce25dc5d01c24ad622d3631271df03</citedby><cites>FETCH-LOGICAL-c355t-c656e523432375d6eb7925c6c73a4905301ce25dc5d01c24ad622d3631271df03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266123080086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266123080086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><creatorcontrib>Kondyrev, O. V.</creatorcontrib><title>On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem is reduced to a system of integral equations over the media interface. Calculation formulas for the system of linear algebraic equations obtained after applying the collocation method and numerical results for solving the problem when the domain is a ball with certain transmission conditions are given.</description><subject>Boundary value problems</subject><subject>Collocation methods</subject><subject>Difference and Functional Equations</subject><subject>Electric waves</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic waves</subject><subject>Electromagnetism</subject><subject>Existence theorems</subject><subject>Fredholm equations</subject><subject>Helmholtz equations</subject><subject>Integral Equations</subject><subject>Linear algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Uniqueness theorems</subject><subject>Wave diffraction</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhoMoWD9-gLeA59V8bJLtsZRqBUGhel7SJNum7CZtkgr15j8364oeRHLIzLzzvDMwAFxhdIMxLW8XCGFCOMeEogqhih-BEeaoKnJKj8Gol4tePwVnMW4QQmOB2Qh8PDmY1gbeBaPXvu3gc_BbE9IBSqfhwrdvcmlbm3PfQAkXh5hM18cPLplVkC2c7fYyWe8itIPVS5AudjbGXOztlm0mGh--xLlpuzwnvf9wF-CkkW00l9__OXi9m71M58Xj0_3DdPJYKMpYKhRn3DBCS0qoYJqbpRgTprgSVJZjxCjCyhCmFdM5IqXUnBBNOcVEYN0geg6uB99t8Lu9iane-H1weWRNKkFFRcuS566boWslW1Nb1_gUpMpPm84q70xjc30ieIVKIcYsA3gAVPAxBtPU22A7GQ41RnV_mvrPaTJDBibmXrcy4XeV_6FPijyPow</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Smirnov, Yu. G.</creator><creator>Kondyrev, O. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230801</creationdate><title>On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation</title><author>Smirnov, Yu. G. ; Kondyrev, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-c656e523432375d6eb7925c6c73a4905301ce25dc5d01c24ad622d3631271df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Collocation methods</topic><topic>Difference and Functional Equations</topic><topic>Electric waves</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic waves</topic><topic>Electromagnetism</topic><topic>Existence theorems</topic><topic>Fredholm equations</topic><topic>Helmholtz equations</topic><topic>Integral Equations</topic><topic>Linear algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Uniqueness theorems</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><creatorcontrib>Kondyrev, O. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Yu. G.</au><au>Kondyrev, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>59</volume><issue>8</issue><spage>1095</spage><epage>1104</epage><pages>1095-1104</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>A scalar three-dimensional boundary value problem of wave diffraction for the Helmholtz equation with transmission conditions that assume the presence of an infinitely thin material at the media interface is considered. Uniqueness and existence theorems for solutions are proved. The original problem is reduced to a system of integral equations over the media interface. Calculation formulas for the system of linear algebraic equations obtained after applying the collocation method and numerical results for solving the problem when the domain is a ball with certain transmission conditions are given.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266123080086</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2023-08, Vol.59 (8), p.1095-1104 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_2873783446 |
source | SpringerLink Journals |
subjects | Boundary value problems Collocation methods Difference and Functional Equations Electric waves Electromagnetic radiation Electromagnetic waves Electromagnetism Existence theorems Fredholm equations Helmholtz equations Integral Equations Linear algebra Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Uniqueness theorems Wave diffraction |
title | On the Fredholm Property and Solvability of a System of Integral Equations in the Transmission Problem for the Helmholtz Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Fredholm%20Property%20and%20Solvability%20of%20a%20System%20of%20Integral%20Equations%20in%20the%20Transmission%20Problem%20for%20the%20Helmholtz%20Equation&rft.jtitle=Differential%20equations&rft.au=Smirnov,%20Yu.%20G.&rft.date=2023-08-01&rft.volume=59&rft.issue=8&rft.spage=1095&rft.epage=1104&rft.pages=1095-1104&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266123080086&rft_dat=%3Cgale_proqu%3EA768047795%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873783446&rft_id=info:pmid/&rft_galeid=A768047795&rfr_iscdi=true |