Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation
Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. He...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2023-11, Vol.140 (43) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 43 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 140 |
creator | Sun, Yue Chen, Tao Zhang, Yan‐ting Wu, Chong‐gang Gong, Xing‐hou Hu, Tao |
description | Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. Herein, multiwalled carbon nanotube (MWCNT) filled silicone rubber (SR) composites with a five‐layered structure are prepared with the outer two layers of neat SR while the middle three layers are MWCNT filled SR, in which the former functions as insulating layers while the latter acts as the dielectric permittivity enhancement layers. Further, by differing the MWCNT content within the middle three layers, we find that as the concentration distribution increases from 1:1:1 to 1:2:1 and 1:3:1, both Young's modulus and dielectric permittivity gradually improve while dielectric loss remains extremely low even though the total MWCNT content reaches 1.6 wt%. With the combined effects of dielectric permittivity and modulus, the composite with evenly distributed MWCNT content (1:1:1) shows the highest actuation strain under a given electric field strength. Meanwhile, the electric breakdown strength of the composite 1:1:1 is also the highest, leading ultimately to a maximum actuation strain of 10.87% at the breakdown strength of 14.6 kV/mm. |
doi_str_mv | 10.1002/app.54590 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873754975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873754975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-81e4dd35bde31f952fa22653a6796e7a372e858ce8222d4038af090e5f7796b33</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWw4A8ssWIR8CNO4iWqeEmVuoF15DhjcOXYwXZA5VP4WlLKau7M3LkjHYQuKbmhhLBbNY43ohSSHKEFJbIuyoo1x2gx72jRSClO0VlKW0IoFaRaoJ_NmO1gv61_w-BA5xgG0O_KW60cHiGaEAflNeBg8DC5bJ3aQYT-0Hwp52atVeyCx175kKcObpN1VgcPOE5dBxHrMIwh2QwJf1qFjZ2v9lOfwWfc25Sj7aZs54wh9JNTe3mOToxyCS7-6xK9Pty_rJ6K9ebxeXW3LjQTLBcNhbLvueh64NRIwYxirBJcVbWsoFa8ZtCIRkPDGOtLwhtliCQgTD0bOs6X6OqQO8bwMUHK7TZM0c8vW9bUvBalrMXsuj64dAwpRTDtGO2g4q6lpN2jb2f07R96_gtlDHvz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873754975</pqid></control><display><type>article</type><title>Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation</title><source>Wiley Online Library All Journals</source><creator>Sun, Yue ; Chen, Tao ; Zhang, Yan‐ting ; Wu, Chong‐gang ; Gong, Xing‐hou ; Hu, Tao</creator><creatorcontrib>Sun, Yue ; Chen, Tao ; Zhang, Yan‐ting ; Wu, Chong‐gang ; Gong, Xing‐hou ; Hu, Tao</creatorcontrib><description>Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. Herein, multiwalled carbon nanotube (MWCNT) filled silicone rubber (SR) composites with a five‐layered structure are prepared with the outer two layers of neat SR while the middle three layers are MWCNT filled SR, in which the former functions as insulating layers while the latter acts as the dielectric permittivity enhancement layers. Further, by differing the MWCNT content within the middle three layers, we find that as the concentration distribution increases from 1:1:1 to 1:2:1 and 1:3:1, both Young's modulus and dielectric permittivity gradually improve while dielectric loss remains extremely low even though the total MWCNT content reaches 1.6 wt%. With the combined effects of dielectric permittivity and modulus, the composite with evenly distributed MWCNT content (1:1:1) shows the highest actuation strain under a given electric field strength. Meanwhile, the electric breakdown strength of the composite 1:1:1 is also the highest, leading ultimately to a maximum actuation strain of 10.87% at the breakdown strength of 14.6 kV/mm.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.54590</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Breakdown ; Composite materials ; Dielectric loss ; Dielectrics ; Elastomers ; Electric field strength ; Electroactive polymers ; Insulating layers ; Materials science ; Modulus of elasticity ; Multi wall carbon nanotubes ; Permittivity ; Polymers ; Silicone rubber ; Silicones</subject><ispartof>Journal of applied polymer science, 2023-11, Vol.140 (43)</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-81e4dd35bde31f952fa22653a6796e7a372e858ce8222d4038af090e5f7796b33</cites><orcidid>0000-0003-2110-387X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Zhang, Yan‐ting</creatorcontrib><creatorcontrib>Wu, Chong‐gang</creatorcontrib><creatorcontrib>Gong, Xing‐hou</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><title>Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation</title><title>Journal of applied polymer science</title><description>Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. Herein, multiwalled carbon nanotube (MWCNT) filled silicone rubber (SR) composites with a five‐layered structure are prepared with the outer two layers of neat SR while the middle three layers are MWCNT filled SR, in which the former functions as insulating layers while the latter acts as the dielectric permittivity enhancement layers. Further, by differing the MWCNT content within the middle three layers, we find that as the concentration distribution increases from 1:1:1 to 1:2:1 and 1:3:1, both Young's modulus and dielectric permittivity gradually improve while dielectric loss remains extremely low even though the total MWCNT content reaches 1.6 wt%. With the combined effects of dielectric permittivity and modulus, the composite with evenly distributed MWCNT content (1:1:1) shows the highest actuation strain under a given electric field strength. Meanwhile, the electric breakdown strength of the composite 1:1:1 is also the highest, leading ultimately to a maximum actuation strain of 10.87% at the breakdown strength of 14.6 kV/mm.</description><subject>Actuation</subject><subject>Breakdown</subject><subject>Composite materials</subject><subject>Dielectric loss</subject><subject>Dielectrics</subject><subject>Elastomers</subject><subject>Electric field strength</subject><subject>Electroactive polymers</subject><subject>Insulating layers</subject><subject>Materials science</subject><subject>Modulus of elasticity</subject><subject>Multi wall carbon nanotubes</subject><subject>Permittivity</subject><subject>Polymers</subject><subject>Silicone rubber</subject><subject>Silicones</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqWw4A8ssWIR8CNO4iWqeEmVuoF15DhjcOXYwXZA5VP4WlLKau7M3LkjHYQuKbmhhLBbNY43ohSSHKEFJbIuyoo1x2gx72jRSClO0VlKW0IoFaRaoJ_NmO1gv61_w-BA5xgG0O_KW60cHiGaEAflNeBg8DC5bJ3aQYT-0Hwp52atVeyCx175kKcObpN1VgcPOE5dBxHrMIwh2QwJf1qFjZ2v9lOfwWfc25Sj7aZs54wh9JNTe3mOToxyCS7-6xK9Pty_rJ6K9ebxeXW3LjQTLBcNhbLvueh64NRIwYxirBJcVbWsoFa8ZtCIRkPDGOtLwhtliCQgTD0bOs6X6OqQO8bwMUHK7TZM0c8vW9bUvBalrMXsuj64dAwpRTDtGO2g4q6lpN2jb2f07R96_gtlDHvz</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Sun, Yue</creator><creator>Chen, Tao</creator><creator>Zhang, Yan‐ting</creator><creator>Wu, Chong‐gang</creator><creator>Gong, Xing‐hou</creator><creator>Hu, Tao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2110-387X</orcidid></search><sort><creationdate>20231115</creationdate><title>Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation</title><author>Sun, Yue ; Chen, Tao ; Zhang, Yan‐ting ; Wu, Chong‐gang ; Gong, Xing‐hou ; Hu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-81e4dd35bde31f952fa22653a6796e7a372e858ce8222d4038af090e5f7796b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuation</topic><topic>Breakdown</topic><topic>Composite materials</topic><topic>Dielectric loss</topic><topic>Dielectrics</topic><topic>Elastomers</topic><topic>Electric field strength</topic><topic>Electroactive polymers</topic><topic>Insulating layers</topic><topic>Materials science</topic><topic>Modulus of elasticity</topic><topic>Multi wall carbon nanotubes</topic><topic>Permittivity</topic><topic>Polymers</topic><topic>Silicone rubber</topic><topic>Silicones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Zhang, Yan‐ting</creatorcontrib><creatorcontrib>Wu, Chong‐gang</creatorcontrib><creatorcontrib>Gong, Xing‐hou</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yue</au><au>Chen, Tao</au><au>Zhang, Yan‐ting</au><au>Wu, Chong‐gang</au><au>Gong, Xing‐hou</au><au>Hu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation</atitle><jtitle>Journal of applied polymer science</jtitle><date>2023-11-15</date><risdate>2023</risdate><volume>140</volume><issue>43</issue><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. Herein, multiwalled carbon nanotube (MWCNT) filled silicone rubber (SR) composites with a five‐layered structure are prepared with the outer two layers of neat SR while the middle three layers are MWCNT filled SR, in which the former functions as insulating layers while the latter acts as the dielectric permittivity enhancement layers. Further, by differing the MWCNT content within the middle three layers, we find that as the concentration distribution increases from 1:1:1 to 1:2:1 and 1:3:1, both Young's modulus and dielectric permittivity gradually improve while dielectric loss remains extremely low even though the total MWCNT content reaches 1.6 wt%. With the combined effects of dielectric permittivity and modulus, the composite with evenly distributed MWCNT content (1:1:1) shows the highest actuation strain under a given electric field strength. Meanwhile, the electric breakdown strength of the composite 1:1:1 is also the highest, leading ultimately to a maximum actuation strain of 10.87% at the breakdown strength of 14.6 kV/mm.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/app.54590</doi><orcidid>https://orcid.org/0000-0003-2110-387X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2023-11, Vol.140 (43) |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2873754975 |
source | Wiley Online Library All Journals |
subjects | Actuation Breakdown Composite materials Dielectric loss Dielectrics Elastomers Electric field strength Electroactive polymers Insulating layers Materials science Modulus of elasticity Multi wall carbon nanotubes Permittivity Polymers Silicone rubber Silicones |
title | Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20electromechanical%20performance%20of%20multilayered%20multiwalled%20carbon%20nanotube/silicone%20rubber%20composites%20via%20filler%20content%20distribution%20modulation&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Sun,%20Yue&rft.date=2023-11-15&rft.volume=140&rft.issue=43&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.54590&rft_dat=%3Cproquest_cross%3E2873754975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873754975&rft_id=info:pmid/&rfr_iscdi=true |