Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation

Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2023-11, Vol.140 (43)
Hauptverfasser: Sun, Yue, Chen, Tao, Zhang, Yan‐ting, Wu, Chong‐gang, Gong, Xing‐hou, Hu, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 43
container_start_page
container_title Journal of applied polymer science
container_volume 140
creator Sun, Yue
Chen, Tao
Zhang, Yan‐ting
Wu, Chong‐gang
Gong, Xing‐hou
Hu, Tao
description Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. Herein, multiwalled carbon nanotube (MWCNT) filled silicone rubber (SR) composites with a five‐layered structure are prepared with the outer two layers of neat SR while the middle three layers are MWCNT filled SR, in which the former functions as insulating layers while the latter acts as the dielectric permittivity enhancement layers. Further, by differing the MWCNT content within the middle three layers, we find that as the concentration distribution increases from 1:1:1 to 1:2:1 and 1:3:1, both Young's modulus and dielectric permittivity gradually improve while dielectric loss remains extremely low even though the total MWCNT content reaches 1.6 wt%. With the combined effects of dielectric permittivity and modulus, the composite with evenly distributed MWCNT content (1:1:1) shows the highest actuation strain under a given electric field strength. Meanwhile, the electric breakdown strength of the composite 1:1:1 is also the highest, leading ultimately to a maximum actuation strain of 10.87% at the breakdown strength of 14.6 kV/mm.
doi_str_mv 10.1002/app.54590
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873754975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873754975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-81e4dd35bde31f952fa22653a6796e7a372e858ce8222d4038af090e5f7796b33</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWw4A8ssWIR8CNO4iWqeEmVuoF15DhjcOXYwXZA5VP4WlLKau7M3LkjHYQuKbmhhLBbNY43ohSSHKEFJbIuyoo1x2gx72jRSClO0VlKW0IoFaRaoJ_NmO1gv61_w-BA5xgG0O_KW60cHiGaEAflNeBg8DC5bJ3aQYT-0Hwp52atVeyCx175kKcObpN1VgcPOE5dBxHrMIwh2QwJf1qFjZ2v9lOfwWfc25Sj7aZs54wh9JNTe3mOToxyCS7-6xK9Pty_rJ6K9ebxeXW3LjQTLBcNhbLvueh64NRIwYxirBJcVbWsoFa8ZtCIRkPDGOtLwhtliCQgTD0bOs6X6OqQO8bwMUHK7TZM0c8vW9bUvBalrMXsuj64dAwpRTDtGO2g4q6lpN2jb2f07R96_gtlDHvz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873754975</pqid></control><display><type>article</type><title>Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation</title><source>Wiley Online Library All Journals</source><creator>Sun, Yue ; Chen, Tao ; Zhang, Yan‐ting ; Wu, Chong‐gang ; Gong, Xing‐hou ; Hu, Tao</creator><creatorcontrib>Sun, Yue ; Chen, Tao ; Zhang, Yan‐ting ; Wu, Chong‐gang ; Gong, Xing‐hou ; Hu, Tao</creatorcontrib><description>Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. Herein, multiwalled carbon nanotube (MWCNT) filled silicone rubber (SR) composites with a five‐layered structure are prepared with the outer two layers of neat SR while the middle three layers are MWCNT filled SR, in which the former functions as insulating layers while the latter acts as the dielectric permittivity enhancement layers. Further, by differing the MWCNT content within the middle three layers, we find that as the concentration distribution increases from 1:1:1 to 1:2:1 and 1:3:1, both Young's modulus and dielectric permittivity gradually improve while dielectric loss remains extremely low even though the total MWCNT content reaches 1.6 wt%. With the combined effects of dielectric permittivity and modulus, the composite with evenly distributed MWCNT content (1:1:1) shows the highest actuation strain under a given electric field strength. Meanwhile, the electric breakdown strength of the composite 1:1:1 is also the highest, leading ultimately to a maximum actuation strain of 10.87% at the breakdown strength of 14.6 kV/mm.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.54590</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Breakdown ; Composite materials ; Dielectric loss ; Dielectrics ; Elastomers ; Electric field strength ; Electroactive polymers ; Insulating layers ; Materials science ; Modulus of elasticity ; Multi wall carbon nanotubes ; Permittivity ; Polymers ; Silicone rubber ; Silicones</subject><ispartof>Journal of applied polymer science, 2023-11, Vol.140 (43)</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-81e4dd35bde31f952fa22653a6796e7a372e858ce8222d4038af090e5f7796b33</cites><orcidid>0000-0003-2110-387X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Zhang, Yan‐ting</creatorcontrib><creatorcontrib>Wu, Chong‐gang</creatorcontrib><creatorcontrib>Gong, Xing‐hou</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><title>Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation</title><title>Journal of applied polymer science</title><description>Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. Herein, multiwalled carbon nanotube (MWCNT) filled silicone rubber (SR) composites with a five‐layered structure are prepared with the outer two layers of neat SR while the middle three layers are MWCNT filled SR, in which the former functions as insulating layers while the latter acts as the dielectric permittivity enhancement layers. Further, by differing the MWCNT content within the middle three layers, we find that as the concentration distribution increases from 1:1:1 to 1:2:1 and 1:3:1, both Young's modulus and dielectric permittivity gradually improve while dielectric loss remains extremely low even though the total MWCNT content reaches 1.6 wt%. With the combined effects of dielectric permittivity and modulus, the composite with evenly distributed MWCNT content (1:1:1) shows the highest actuation strain under a given electric field strength. Meanwhile, the electric breakdown strength of the composite 1:1:1 is also the highest, leading ultimately to a maximum actuation strain of 10.87% at the breakdown strength of 14.6 kV/mm.</description><subject>Actuation</subject><subject>Breakdown</subject><subject>Composite materials</subject><subject>Dielectric loss</subject><subject>Dielectrics</subject><subject>Elastomers</subject><subject>Electric field strength</subject><subject>Electroactive polymers</subject><subject>Insulating layers</subject><subject>Materials science</subject><subject>Modulus of elasticity</subject><subject>Multi wall carbon nanotubes</subject><subject>Permittivity</subject><subject>Polymers</subject><subject>Silicone rubber</subject><subject>Silicones</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqWw4A8ssWIR8CNO4iWqeEmVuoF15DhjcOXYwXZA5VP4WlLKau7M3LkjHYQuKbmhhLBbNY43ohSSHKEFJbIuyoo1x2gx72jRSClO0VlKW0IoFaRaoJ_NmO1gv61_w-BA5xgG0O_KW60cHiGaEAflNeBg8DC5bJ3aQYT-0Hwp52atVeyCx175kKcObpN1VgcPOE5dBxHrMIwh2QwJf1qFjZ2v9lOfwWfc25Sj7aZs54wh9JNTe3mOToxyCS7-6xK9Pty_rJ6K9ebxeXW3LjQTLBcNhbLvueh64NRIwYxirBJcVbWsoFa8ZtCIRkPDGOtLwhtliCQgTD0bOs6X6OqQO8bwMUHK7TZM0c8vW9bUvBalrMXsuj64dAwpRTDtGO2g4q6lpN2jb2f07R96_gtlDHvz</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Sun, Yue</creator><creator>Chen, Tao</creator><creator>Zhang, Yan‐ting</creator><creator>Wu, Chong‐gang</creator><creator>Gong, Xing‐hou</creator><creator>Hu, Tao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2110-387X</orcidid></search><sort><creationdate>20231115</creationdate><title>Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation</title><author>Sun, Yue ; Chen, Tao ; Zhang, Yan‐ting ; Wu, Chong‐gang ; Gong, Xing‐hou ; Hu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-81e4dd35bde31f952fa22653a6796e7a372e858ce8222d4038af090e5f7796b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuation</topic><topic>Breakdown</topic><topic>Composite materials</topic><topic>Dielectric loss</topic><topic>Dielectrics</topic><topic>Elastomers</topic><topic>Electric field strength</topic><topic>Electroactive polymers</topic><topic>Insulating layers</topic><topic>Materials science</topic><topic>Modulus of elasticity</topic><topic>Multi wall carbon nanotubes</topic><topic>Permittivity</topic><topic>Polymers</topic><topic>Silicone rubber</topic><topic>Silicones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Zhang, Yan‐ting</creatorcontrib><creatorcontrib>Wu, Chong‐gang</creatorcontrib><creatorcontrib>Gong, Xing‐hou</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yue</au><au>Chen, Tao</au><au>Zhang, Yan‐ting</au><au>Wu, Chong‐gang</au><au>Gong, Xing‐hou</au><au>Hu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation</atitle><jtitle>Journal of applied polymer science</jtitle><date>2023-11-15</date><risdate>2023</risdate><volume>140</volume><issue>43</issue><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Dielectric elastomers are widely used as electroactive polymer materials due to their high energy density, high strain, and low loss. However, the practical applications are limited sometimes by their low electromechanical strain ability due to relatively low dielectric permittivity for polymers. Herein, multiwalled carbon nanotube (MWCNT) filled silicone rubber (SR) composites with a five‐layered structure are prepared with the outer two layers of neat SR while the middle three layers are MWCNT filled SR, in which the former functions as insulating layers while the latter acts as the dielectric permittivity enhancement layers. Further, by differing the MWCNT content within the middle three layers, we find that as the concentration distribution increases from 1:1:1 to 1:2:1 and 1:3:1, both Young's modulus and dielectric permittivity gradually improve while dielectric loss remains extremely low even though the total MWCNT content reaches 1.6 wt%. With the combined effects of dielectric permittivity and modulus, the composite with evenly distributed MWCNT content (1:1:1) shows the highest actuation strain under a given electric field strength. Meanwhile, the electric breakdown strength of the composite 1:1:1 is also the highest, leading ultimately to a maximum actuation strain of 10.87% at the breakdown strength of 14.6 kV/mm.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/app.54590</doi><orcidid>https://orcid.org/0000-0003-2110-387X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2023-11, Vol.140 (43)
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2873754975
source Wiley Online Library All Journals
subjects Actuation
Breakdown
Composite materials
Dielectric loss
Dielectrics
Elastomers
Electric field strength
Electroactive polymers
Insulating layers
Materials science
Modulus of elasticity
Multi wall carbon nanotubes
Permittivity
Polymers
Silicone rubber
Silicones
title Optimizing electromechanical performance of multilayered multiwalled carbon nanotube/silicone rubber composites via filler content distribution modulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20electromechanical%20performance%20of%20multilayered%20multiwalled%20carbon%20nanotube/silicone%20rubber%20composites%20via%20filler%20content%20distribution%20modulation&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Sun,%20Yue&rft.date=2023-11-15&rft.volume=140&rft.issue=43&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.54590&rft_dat=%3Cproquest_cross%3E2873754975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873754975&rft_id=info:pmid/&rfr_iscdi=true