Divalent copper ions-doped strontium magnesium phosphate nanopowder: synthesis and characterization
In this present work, we demonstrate the findings of synthesized Cu 2+ -doped strontium magnesium phosphate ( SrMg 2 (PO 4 ) 2 ) nanopowder by solid-state reaction method. The structural, morphological, optical, and luminescence properties were studied by various experimental techniques XRD, SEM–EDS...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023-10, Vol.34 (28), p.1958, Article 1958 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 28 |
container_start_page | 1958 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Rajendrakumar, A. Anjaneyulu, N. Ch Vasu, G. Ravikumar, R. V. S. S. N. Arundhathi, N. |
description | In this present work, we demonstrate the findings of synthesized Cu
2+
-doped strontium magnesium phosphate
(
SrMg
2
(PO
4
)
2
) nanopowder by solid-state reaction method. The structural, morphological, optical, and luminescence properties were studied by various experimental techniques XRD, SEM–EDS, FTIR, Optical absorption, EPR, and Photoluminescence. According to X-ray diffraction analysis, the prepared nanopowder exhibits a monoclinic phase. Crystallite size, micro-strain, and dislocation density were calculated, and compared with the values obtained from the Williamson–Hall method which are agreed well. The surface morphology of the prepared sample was analyzed by SEM and calculated grain size using a histogram. EDS spectrum shows elements present in the sample. FTIR peaks have revealed the presence of phosphate-related vibrational bands, P–O–H, and hydraxyl ions. EPR and optical absorption studies have been made to determine the site symmetry of Cu
2+
ion. The PL emission spectrum shows various bands in visible region. Chromaticity coordinates are indicating white color in CIE diagram. CRI and CCT values also calculated. The results are suggesting that the prepared material is a source of cold white light and is suitable for commercial LED applications. |
doi_str_mv | 10.1007/s10854-023-11350-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873635886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873635886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7c07c5edf6dd3e765bfb0144a6fdffc10a4073ae0749beb44ece2079656b48d73</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA6-jLJJlM3Un9hIIbBXchk7xpp7TJmKRK_fVOreDO1buLc--DQ8g5g0sGoK4Sg1oKCiWnjHEJVB6QEZOKU1GXb4dkBBOpqJBleUxOUloCQCV4PSL2tvswK_S5sKHvMRZd8Im60KMrUo7B526zLtZm7jHtUr8IqV-YjIU3PvTh02G8LtLW58UApMJ4V9iFicZmjN2XycPeKTlqzSrh2e8dk9f7u5fpI509PzxNb2bUcjbJVFlQVqJrK-c4qko2bQNMCFO1rm0tAyNAcYOgxKTBRgi0WIKaVLJqRO0UH5OL_W4fw_sGU9bLsIl-eKnLWvGKy7quBqrcUzaGlCK2uo_d2sStZqB3MvVeph5k6h-ZWg4lvi-lAfZzjH_T_7S-Af8eeoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873635886</pqid></control><display><type>article</type><title>Divalent copper ions-doped strontium magnesium phosphate nanopowder: synthesis and characterization</title><source>SpringerNature Journals</source><creator>Rajendrakumar, A. ; Anjaneyulu, N. Ch ; Vasu, G. ; Ravikumar, R. V. S. S. N. ; Arundhathi, N.</creator><creatorcontrib>Rajendrakumar, A. ; Anjaneyulu, N. Ch ; Vasu, G. ; Ravikumar, R. V. S. S. N. ; Arundhathi, N.</creatorcontrib><description>In this present work, we demonstrate the findings of synthesized Cu
2+
-doped strontium magnesium phosphate
(
SrMg
2
(PO
4
)
2
) nanopowder by solid-state reaction method. The structural, morphological, optical, and luminescence properties were studied by various experimental techniques XRD, SEM–EDS, FTIR, Optical absorption, EPR, and Photoluminescence. According to X-ray diffraction analysis, the prepared nanopowder exhibits a monoclinic phase. Crystallite size, micro-strain, and dislocation density were calculated, and compared with the values obtained from the Williamson–Hall method which are agreed well. The surface morphology of the prepared sample was analyzed by SEM and calculated grain size using a histogram. EDS spectrum shows elements present in the sample. FTIR peaks have revealed the presence of phosphate-related vibrational bands, P–O–H, and hydraxyl ions. EPR and optical absorption studies have been made to determine the site symmetry of Cu
2+
ion. The PL emission spectrum shows various bands in visible region. Chromaticity coordinates are indicating white color in CIE diagram. CRI and CCT values also calculated. The results are suggesting that the prepared material is a source of cold white light and is suitable for commercial LED applications.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11350-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromaticity ; Copper ; Crystal dislocations ; Crystallites ; Dislocation density ; Grain size ; Light emitting diodes ; Luminescence ; Magnesium ; Magnesium phosphate ; Materials Science ; Mathematical analysis ; Morphology ; Optical and Electronic Materials ; Optical properties ; Photoluminescence ; Software ; Symmetry ; White light</subject><ispartof>Journal of materials science. Materials in electronics, 2023-10, Vol.34 (28), p.1958, Article 1958</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7c07c5edf6dd3e765bfb0144a6fdffc10a4073ae0749beb44ece2079656b48d73</citedby><cites>FETCH-LOGICAL-c319t-7c07c5edf6dd3e765bfb0144a6fdffc10a4073ae0749beb44ece2079656b48d73</cites><orcidid>0000-0002-9086-0279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11350-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11350-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rajendrakumar, A.</creatorcontrib><creatorcontrib>Anjaneyulu, N. Ch</creatorcontrib><creatorcontrib>Vasu, G.</creatorcontrib><creatorcontrib>Ravikumar, R. V. S. S. N.</creatorcontrib><creatorcontrib>Arundhathi, N.</creatorcontrib><title>Divalent copper ions-doped strontium magnesium phosphate nanopowder: synthesis and characterization</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this present work, we demonstrate the findings of synthesized Cu
2+
-doped strontium magnesium phosphate
(
SrMg
2
(PO
4
)
2
) nanopowder by solid-state reaction method. The structural, morphological, optical, and luminescence properties were studied by various experimental techniques XRD, SEM–EDS, FTIR, Optical absorption, EPR, and Photoluminescence. According to X-ray diffraction analysis, the prepared nanopowder exhibits a monoclinic phase. Crystallite size, micro-strain, and dislocation density were calculated, and compared with the values obtained from the Williamson–Hall method which are agreed well. The surface morphology of the prepared sample was analyzed by SEM and calculated grain size using a histogram. EDS spectrum shows elements present in the sample. FTIR peaks have revealed the presence of phosphate-related vibrational bands, P–O–H, and hydraxyl ions. EPR and optical absorption studies have been made to determine the site symmetry of Cu
2+
ion. The PL emission spectrum shows various bands in visible region. Chromaticity coordinates are indicating white color in CIE diagram. CRI and CCT values also calculated. The results are suggesting that the prepared material is a source of cold white light and is suitable for commercial LED applications.</description><subject>Absorption</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromaticity</subject><subject>Copper</subject><subject>Crystal dislocations</subject><subject>Crystallites</subject><subject>Dislocation density</subject><subject>Grain size</subject><subject>Light emitting diodes</subject><subject>Luminescence</subject><subject>Magnesium</subject><subject>Magnesium phosphate</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Software</subject><subject>Symmetry</subject><subject>White light</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wNWA6-jLJJlM3Un9hIIbBXchk7xpp7TJmKRK_fVOreDO1buLc--DQ8g5g0sGoK4Sg1oKCiWnjHEJVB6QEZOKU1GXb4dkBBOpqJBleUxOUloCQCV4PSL2tvswK_S5sKHvMRZd8Im60KMrUo7B526zLtZm7jHtUr8IqV-YjIU3PvTh02G8LtLW58UApMJ4V9iFicZmjN2XycPeKTlqzSrh2e8dk9f7u5fpI509PzxNb2bUcjbJVFlQVqJrK-c4qko2bQNMCFO1rm0tAyNAcYOgxKTBRgi0WIKaVLJqRO0UH5OL_W4fw_sGU9bLsIl-eKnLWvGKy7quBqrcUzaGlCK2uo_d2sStZqB3MvVeph5k6h-ZWg4lvi-lAfZzjH_T_7S-Af8eeoA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Rajendrakumar, A.</creator><creator>Anjaneyulu, N. Ch</creator><creator>Vasu, G.</creator><creator>Ravikumar, R. V. S. S. N.</creator><creator>Arundhathi, N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9086-0279</orcidid></search><sort><creationdate>20231001</creationdate><title>Divalent copper ions-doped strontium magnesium phosphate nanopowder: synthesis and characterization</title><author>Rajendrakumar, A. ; Anjaneyulu, N. Ch ; Vasu, G. ; Ravikumar, R. V. S. S. N. ; Arundhathi, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7c07c5edf6dd3e765bfb0144a6fdffc10a4073ae0749beb44ece2079656b48d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromaticity</topic><topic>Copper</topic><topic>Crystal dislocations</topic><topic>Crystallites</topic><topic>Dislocation density</topic><topic>Grain size</topic><topic>Light emitting diodes</topic><topic>Luminescence</topic><topic>Magnesium</topic><topic>Magnesium phosphate</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Software</topic><topic>Symmetry</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajendrakumar, A.</creatorcontrib><creatorcontrib>Anjaneyulu, N. Ch</creatorcontrib><creatorcontrib>Vasu, G.</creatorcontrib><creatorcontrib>Ravikumar, R. V. S. S. N.</creatorcontrib><creatorcontrib>Arundhathi, N.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajendrakumar, A.</au><au>Anjaneyulu, N. Ch</au><au>Vasu, G.</au><au>Ravikumar, R. V. S. S. N.</au><au>Arundhathi, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divalent copper ions-doped strontium magnesium phosphate nanopowder: synthesis and characterization</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>34</volume><issue>28</issue><spage>1958</spage><pages>1958-</pages><artnum>1958</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this present work, we demonstrate the findings of synthesized Cu
2+
-doped strontium magnesium phosphate
(
SrMg
2
(PO
4
)
2
) nanopowder by solid-state reaction method. The structural, morphological, optical, and luminescence properties were studied by various experimental techniques XRD, SEM–EDS, FTIR, Optical absorption, EPR, and Photoluminescence. According to X-ray diffraction analysis, the prepared nanopowder exhibits a monoclinic phase. Crystallite size, micro-strain, and dislocation density were calculated, and compared with the values obtained from the Williamson–Hall method which are agreed well. The surface morphology of the prepared sample was analyzed by SEM and calculated grain size using a histogram. EDS spectrum shows elements present in the sample. FTIR peaks have revealed the presence of phosphate-related vibrational bands, P–O–H, and hydraxyl ions. EPR and optical absorption studies have been made to determine the site symmetry of Cu
2+
ion. The PL emission spectrum shows various bands in visible region. Chromaticity coordinates are indicating white color in CIE diagram. CRI and CCT values also calculated. The results are suggesting that the prepared material is a source of cold white light and is suitable for commercial LED applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11350-5</doi><orcidid>https://orcid.org/0000-0002-9086-0279</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-10, Vol.34 (28), p.1958, Article 1958 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2873635886 |
source | SpringerNature Journals |
subjects | Absorption Characterization and Evaluation of Materials Chemistry and Materials Science Chromaticity Copper Crystal dislocations Crystallites Dislocation density Grain size Light emitting diodes Luminescence Magnesium Magnesium phosphate Materials Science Mathematical analysis Morphology Optical and Electronic Materials Optical properties Photoluminescence Software Symmetry White light |
title | Divalent copper ions-doped strontium magnesium phosphate nanopowder: synthesis and characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divalent%20copper%20ions-doped%20strontium%20magnesium%20phosphate%20nanopowder:%20synthesis%20and%20characterization&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Rajendrakumar,%20A.&rft.date=2023-10-01&rft.volume=34&rft.issue=28&rft.spage=1958&rft.pages=1958-&rft.artnum=1958&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11350-5&rft_dat=%3Cproquest_cross%3E2873635886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873635886&rft_id=info:pmid/&rfr_iscdi=true |