Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation

Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2023-10, Vol.71 (10), p.1-1
Hauptverfasser: Zhu, Xiaojie, Di Rienzo, Luca, Ma, Xikui, Codecasa, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 10
container_start_page 1
container_title IEEE transactions on antennas and propagation
container_volume 71
creator Zhu, Xiaojie
Di Rienzo, Luca
Ma, Xikui
Codecasa, Lorenzo
description Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagnetic problems. It is shown that such enhanced MLMC-FDTD is faster than conventional Monte Carlo FDTD while inheriting its advantages of robustness, simplicity and generality, unlike other uncertainty analysis methods, such as the perturbation and the moment methods that cannot be used to straightforwardly estimate probability distribution, or the polynomial chaos method that suffers from the curse of dimensionality problem or even fails.
doi_str_mv 10.1109/TAP.2023.3291740
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2873584963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10179271</ieee_id><sourcerecordid>2873584963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-65c051cb620c45bde42a01221365996378a94a8af9e797379a34c2cffd292bad3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWB97Fy4CrqfmOZksSx8qtNhFBVeGTCZDU8bJmKRC_70p7cLVvRfOOffwAfCA0RhjJJ83k_WYIELHlEgsGLoAI8x5VRBC8CUYIYSrQpLy8xrcxLjLJ6sYG4Gveb_VvbENXO275Dr7azu48n2ycKpD5-HKpq1v4GQYOpdVycPFbDODrQ9wHXyta9e5dIAzF1Nw9T4538N5TO5bH9c7cNXqLtr787wFH4v5ZvpaLN9f3qaTZWEI46kouUEcm7okyDBeN5YRjXBuTksuZUlFpSXTlW6lFVJQITVlhpi2bYgktW7oLXg65Q7B_-xtTGrn96HPLxWpBOUVyylZhU4qE3yMwbZqCLloOCiM1JGiyhTVkaI6U8yWx5PFWWv_ybGQRGD6B_3wbYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873584963</pqid></control><display><type>article</type><title>Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Xiaojie ; Di Rienzo, Luca ; Ma, Xikui ; Codecasa, Lorenzo</creator><creatorcontrib>Zhu, Xiaojie ; Di Rienzo, Luca ; Ma, Xikui ; Codecasa, Lorenzo</creatorcontrib><description>Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagnetic problems. It is shown that such enhanced MLMC-FDTD is faster than conventional Monte Carlo FDTD while inheriting its advantages of robustness, simplicity and generality, unlike other uncertainty analysis methods, such as the perturbation and the moment methods that cannot be used to straightforwardly estimate probability distribution, or the polynomial chaos method that suffers from the curse of dimensionality problem or even fails.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3291740</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Finite difference methods ; Finite difference time domain method ; kernel density estimation ; Maximum likelihood estimation ; Monte Carlo methods ; Monte Carlo simulation ; multilevel Monte Carlo method ; Perturbation ; Polynomials ; Probability distribution ; Time-domain analysis ; Uncertainty ; Uncertainty analysis</subject><ispartof>IEEE transactions on antennas and propagation, 2023-10, Vol.71 (10), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-65c051cb620c45bde42a01221365996378a94a8af9e797379a34c2cffd292bad3</cites><orcidid>0000-0002-8718-1777 ; 0000-0001-8380-3092 ; 0000-0002-2228-8872 ; 0000-0002-2851-3698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10179271$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10179271$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Xiaojie</creatorcontrib><creatorcontrib>Di Rienzo, Luca</creatorcontrib><creatorcontrib>Ma, Xikui</creatorcontrib><creatorcontrib>Codecasa, Lorenzo</creatorcontrib><title>Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagnetic problems. It is shown that such enhanced MLMC-FDTD is faster than conventional Monte Carlo FDTD while inheriting its advantages of robustness, simplicity and generality, unlike other uncertainty analysis methods, such as the perturbation and the moment methods that cannot be used to straightforwardly estimate probability distribution, or the polynomial chaos method that suffers from the curse of dimensionality problem or even fails.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>kernel density estimation</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>multilevel Monte Carlo method</subject><subject>Perturbation</subject><subject>Polynomials</subject><subject>Probability distribution</subject><subject>Time-domain analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWB97Fy4CrqfmOZksSx8qtNhFBVeGTCZDU8bJmKRC_70p7cLVvRfOOffwAfCA0RhjJJ83k_WYIELHlEgsGLoAI8x5VRBC8CUYIYSrQpLy8xrcxLjLJ6sYG4Gveb_VvbENXO275Dr7azu48n2ycKpD5-HKpq1v4GQYOpdVycPFbDODrQ9wHXyta9e5dIAzF1Nw9T4538N5TO5bH9c7cNXqLtr787wFH4v5ZvpaLN9f3qaTZWEI46kouUEcm7okyDBeN5YRjXBuTksuZUlFpSXTlW6lFVJQITVlhpi2bYgktW7oLXg65Q7B_-xtTGrn96HPLxWpBOUVyylZhU4qE3yMwbZqCLloOCiM1JGiyhTVkaI6U8yWx5PFWWv_ybGQRGD6B_3wbYk</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhu, Xiaojie</creator><creator>Di Rienzo, Luca</creator><creator>Ma, Xikui</creator><creator>Codecasa, Lorenzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8718-1777</orcidid><orcidid>https://orcid.org/0000-0001-8380-3092</orcidid><orcidid>https://orcid.org/0000-0002-2228-8872</orcidid><orcidid>https://orcid.org/0000-0002-2851-3698</orcidid></search><sort><creationdate>20231001</creationdate><title>Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation</title><author>Zhu, Xiaojie ; Di Rienzo, Luca ; Ma, Xikui ; Codecasa, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-65c051cb620c45bde42a01221365996378a94a8af9e797379a34c2cffd292bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>kernel density estimation</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>multilevel Monte Carlo method</topic><topic>Perturbation</topic><topic>Polynomials</topic><topic>Probability distribution</topic><topic>Time-domain analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaojie</creatorcontrib><creatorcontrib>Di Rienzo, Luca</creatorcontrib><creatorcontrib>Ma, Xikui</creatorcontrib><creatorcontrib>Codecasa, Lorenzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Xiaojie</au><au>Di Rienzo, Luca</au><au>Ma, Xikui</au><au>Codecasa, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>71</volume><issue>10</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagnetic problems. It is shown that such enhanced MLMC-FDTD is faster than conventional Monte Carlo FDTD while inheriting its advantages of robustness, simplicity and generality, unlike other uncertainty analysis methods, such as the perturbation and the moment methods that cannot be used to straightforwardly estimate probability distribution, or the polynomial chaos method that suffers from the curse of dimensionality problem or even fails.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3291740</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8718-1777</orcidid><orcidid>https://orcid.org/0000-0001-8380-3092</orcidid><orcidid>https://orcid.org/0000-0002-2228-8872</orcidid><orcidid>https://orcid.org/0000-0002-2851-3698</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2023-10, Vol.71 (10), p.1-1
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2873584963
source IEEE Electronic Library (IEL)
subjects Algorithms
Convergence
Finite difference methods
Finite difference time domain method
kernel density estimation
Maximum likelihood estimation
Monte Carlo methods
Monte Carlo simulation
multilevel Monte Carlo method
Perturbation
Polynomials
Probability distribution
Time-domain analysis
Uncertainty
Uncertainty analysis
title Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Multilevel%20Monte%20Carlo%20Method%20Applied%20to%20FDTD%20for%20Probability%20Distribution%20Estimation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Zhu,%20Xiaojie&rft.date=2023-10-01&rft.volume=71&rft.issue=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3291740&rft_dat=%3Cproquest_RIE%3E2873584963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873584963&rft_id=info:pmid/&rft_ieee_id=10179271&rfr_iscdi=true