Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation
Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagne...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2023-10, Vol.71 (10), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 71 |
creator | Zhu, Xiaojie Di Rienzo, Luca Ma, Xikui Codecasa, Lorenzo |
description | Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagnetic problems. It is shown that such enhanced MLMC-FDTD is faster than conventional Monte Carlo FDTD while inheriting its advantages of robustness, simplicity and generality, unlike other uncertainty analysis methods, such as the perturbation and the moment methods that cannot be used to straightforwardly estimate probability distribution, or the polynomial chaos method that suffers from the curse of dimensionality problem or even fails. |
doi_str_mv | 10.1109/TAP.2023.3291740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2873584963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10179271</ieee_id><sourcerecordid>2873584963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-65c051cb620c45bde42a01221365996378a94a8af9e797379a34c2cffd292bad3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWB97Fy4CrqfmOZksSx8qtNhFBVeGTCZDU8bJmKRC_70p7cLVvRfOOffwAfCA0RhjJJ83k_WYIELHlEgsGLoAI8x5VRBC8CUYIYSrQpLy8xrcxLjLJ6sYG4Gveb_VvbENXO275Dr7azu48n2ycKpD5-HKpq1v4GQYOpdVycPFbDODrQ9wHXyta9e5dIAzF1Nw9T4538N5TO5bH9c7cNXqLtr787wFH4v5ZvpaLN9f3qaTZWEI46kouUEcm7okyDBeN5YRjXBuTksuZUlFpSXTlW6lFVJQITVlhpi2bYgktW7oLXg65Q7B_-xtTGrn96HPLxWpBOUVyylZhU4qE3yMwbZqCLloOCiM1JGiyhTVkaI6U8yWx5PFWWv_ybGQRGD6B_3wbYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873584963</pqid></control><display><type>article</type><title>Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Xiaojie ; Di Rienzo, Luca ; Ma, Xikui ; Codecasa, Lorenzo</creator><creatorcontrib>Zhu, Xiaojie ; Di Rienzo, Luca ; Ma, Xikui ; Codecasa, Lorenzo</creatorcontrib><description>Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagnetic problems. It is shown that such enhanced MLMC-FDTD is faster than conventional Monte Carlo FDTD while inheriting its advantages of robustness, simplicity and generality, unlike other uncertainty analysis methods, such as the perturbation and the moment methods that cannot be used to straightforwardly estimate probability distribution, or the polynomial chaos method that suffers from the curse of dimensionality problem or even fails.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3291740</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Finite difference methods ; Finite difference time domain method ; kernel density estimation ; Maximum likelihood estimation ; Monte Carlo methods ; Monte Carlo simulation ; multilevel Monte Carlo method ; Perturbation ; Polynomials ; Probability distribution ; Time-domain analysis ; Uncertainty ; Uncertainty analysis</subject><ispartof>IEEE transactions on antennas and propagation, 2023-10, Vol.71 (10), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-65c051cb620c45bde42a01221365996378a94a8af9e797379a34c2cffd292bad3</cites><orcidid>0000-0002-8718-1777 ; 0000-0001-8380-3092 ; 0000-0002-2228-8872 ; 0000-0002-2851-3698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10179271$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10179271$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Xiaojie</creatorcontrib><creatorcontrib>Di Rienzo, Luca</creatorcontrib><creatorcontrib>Ma, Xikui</creatorcontrib><creatorcontrib>Codecasa, Lorenzo</creatorcontrib><title>Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagnetic problems. It is shown that such enhanced MLMC-FDTD is faster than conventional Monte Carlo FDTD while inheriting its advantages of robustness, simplicity and generality, unlike other uncertainty analysis methods, such as the perturbation and the moment methods that cannot be used to straightforwardly estimate probability distribution, or the polynomial chaos method that suffers from the curse of dimensionality problem or even fails.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>kernel density estimation</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>multilevel Monte Carlo method</subject><subject>Perturbation</subject><subject>Polynomials</subject><subject>Probability distribution</subject><subject>Time-domain analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWB97Fy4CrqfmOZksSx8qtNhFBVeGTCZDU8bJmKRC_70p7cLVvRfOOffwAfCA0RhjJJ83k_WYIELHlEgsGLoAI8x5VRBC8CUYIYSrQpLy8xrcxLjLJ6sYG4Gveb_VvbENXO275Dr7azu48n2ycKpD5-HKpq1v4GQYOpdVycPFbDODrQ9wHXyta9e5dIAzF1Nw9T4538N5TO5bH9c7cNXqLtr787wFH4v5ZvpaLN9f3qaTZWEI46kouUEcm7okyDBeN5YRjXBuTksuZUlFpSXTlW6lFVJQITVlhpi2bYgktW7oLXg65Q7B_-xtTGrn96HPLxWpBOUVyylZhU4qE3yMwbZqCLloOCiM1JGiyhTVkaI6U8yWx5PFWWv_ybGQRGD6B_3wbYk</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhu, Xiaojie</creator><creator>Di Rienzo, Luca</creator><creator>Ma, Xikui</creator><creator>Codecasa, Lorenzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8718-1777</orcidid><orcidid>https://orcid.org/0000-0001-8380-3092</orcidid><orcidid>https://orcid.org/0000-0002-2228-8872</orcidid><orcidid>https://orcid.org/0000-0002-2851-3698</orcidid></search><sort><creationdate>20231001</creationdate><title>Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation</title><author>Zhu, Xiaojie ; Di Rienzo, Luca ; Ma, Xikui ; Codecasa, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-65c051cb620c45bde42a01221365996378a94a8af9e797379a34c2cffd292bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>kernel density estimation</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>multilevel Monte Carlo method</topic><topic>Perturbation</topic><topic>Polynomials</topic><topic>Probability distribution</topic><topic>Time-domain analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaojie</creatorcontrib><creatorcontrib>Di Rienzo, Luca</creatorcontrib><creatorcontrib>Ma, Xikui</creatorcontrib><creatorcontrib>Codecasa, Lorenzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Xiaojie</au><au>Di Rienzo, Luca</au><au>Ma, Xikui</au><au>Codecasa, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>71</volume><issue>10</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Multilevel Monte Carlo (MLMC) method, enhanced by a smoothing technique based on Kernel Density Estimation, is coupled with the Finite-Difference Time-Domain (FDTD) algorithm in order to estimate the probability distribution of any quantity of interest, for uncertainty quantification in electromagnetic problems. It is shown that such enhanced MLMC-FDTD is faster than conventional Monte Carlo FDTD while inheriting its advantages of robustness, simplicity and generality, unlike other uncertainty analysis methods, such as the perturbation and the moment methods that cannot be used to straightforwardly estimate probability distribution, or the polynomial chaos method that suffers from the curse of dimensionality problem or even fails.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3291740</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8718-1777</orcidid><orcidid>https://orcid.org/0000-0001-8380-3092</orcidid><orcidid>https://orcid.org/0000-0002-2228-8872</orcidid><orcidid>https://orcid.org/0000-0002-2851-3698</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2023-10, Vol.71 (10), p.1-1 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2873584963 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Convergence Finite difference methods Finite difference time domain method kernel density estimation Maximum likelihood estimation Monte Carlo methods Monte Carlo simulation multilevel Monte Carlo method Perturbation Polynomials Probability distribution Time-domain analysis Uncertainty Uncertainty analysis |
title | Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Multilevel%20Monte%20Carlo%20Method%20Applied%20to%20FDTD%20for%20Probability%20Distribution%20Estimation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Zhu,%20Xiaojie&rft.date=2023-10-01&rft.volume=71&rft.issue=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3291740&rft_dat=%3Cproquest_RIE%3E2873584963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873584963&rft_id=info:pmid/&rft_ieee_id=10179271&rfr_iscdi=true |