Operation of Grid-Connected PV System With ANN-Based MPPT and an Optimized LCL Filter Using GRG Algorithm for Enhanced Power Quality

The expanding use of photovoltaics (PV) as a green energy resource has been rising in these years, mostly due to the possibility of being incorporated with traditional power systems, to meet the world's energy needs and reduce carbon emissions. However, providing green electricity from this ren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.106859-106876
Hauptverfasser: Ibrahim, Nagwa F., Mahmoud, Mohamed Metwally, Thaiban, Ali M. H. Al, Barnawi, Abdulwasa B., Elbarbary, Z. M. S., Omar, Ahmed Ibrahim, Abdelfattah, Hany
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106876
container_issue
container_start_page 106859
container_title IEEE access
container_volume 11
creator Ibrahim, Nagwa F.
Mahmoud, Mohamed Metwally
Thaiban, Ali M. H. Al
Barnawi, Abdulwasa B.
Elbarbary, Z. M. S.
Omar, Ahmed Ibrahim
Abdelfattah, Hany
description The expanding use of photovoltaics (PV) as a green energy resource has been rising in these years, mostly due to the possibility of being incorporated with traditional power systems, to meet the world's energy needs and reduce carbon emissions. However, providing green electricity from this renewable generator is frequently vulnerable to power quality (PQ) disruptions resulting from the PV's intermittent nature and other factors associated with the electric grid, power converters, and linked loads. These disruptions need to be reduced to keep the investigated system's PQ from deteriorating. The investigated system includes PV, DC-DC, and DC-AC converters, filter, power grid, and control schemes. If the DC-DC converter is not managed, a deviation from the maximum power point (MPP) extrapolated from the PV system will take place. In order to maximize the energy harvested from the PV system by managing the DC-DC converter, this research developed two MPP tracking (MPPT) algorithms: artificial neural networks (ANN) and cuckoo search (CS). Additionally, a design and implementation for a shunt active power filter (LCL) using genetic algorithm and GRG is provided to lower the injected total harmonic distortion (THD) and thereby enhance the PQ. To achieve the smallest size of the LCL components, the generalized reduced gradient (GRG) was the best compared to genetic algorithms GA. The results of the simulation showed that ANN performed better at tracking maximum power than CS. With the designed LCL, the THD is reduced by 99.78% compared to without a filter. To verify the simulation's findings, a practical configuration is implemented.
doi_str_mv 10.1109/ACCESS.2023.3317980
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2873584859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10258260</ieee_id><doaj_id>oai_doaj_org_article_ebee12e39a6d440cb1cc806a2aaacba8</doaj_id><sourcerecordid>2873584859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-85a44064938678cce9aa7a70bbeed7ed2ab49cb9ef677f964abf96e9974893b93</originalsourceid><addsrcrecordid>eNpNUdFq2zAUNWOFlbZfsD0I9uxMlmxLesxMmhayJm3a7VFcy9epgmNlssLInvfhVeZSKri6l6N7zhGcJPmc0UmWUfVtWlWz9XrCKOMTzjOhJP2QnLOsVCkvePnx3fwpuRqGLY1HRqgQ58m_5R49BOt64loy97ZJK9f3aAI2ZPWTrI9DwB35ZcMzmd7dpd9hiA8_VqtHAn0Tiyz3we7s34guqgW5tl1AT54G22_I_GFOpt3G-cjekdZ5MuufoTcnafcnrt0foLPheJmctdANePXaL5Kn69ljdZMulvPbarpITU5VSGUBeU7LXHFZCmkMKgABgtY1YiOwYVDnytQK21KIVpU51PFGpUQuFa8Vv0huR93GwVbvvd2BP2oHVv8HnN9o8MGaDjVGzYwhV1A20dTUmTGSlsAAwNQgo9bXUWvv3e8DDkFv3cH38fuaScELmcvi5MjHLePdMHhs31wzqk_p6TE9fUpPv6YXWV9GlkXEdwxWSFZS_gJFUJYC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873584859</pqid></control><display><type>article</type><title>Operation of Grid-Connected PV System With ANN-Based MPPT and an Optimized LCL Filter Using GRG Algorithm for Enhanced Power Quality</title><source>IEEE Open Access Journals</source><source>TestCollectionTL3OpenAccess</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ibrahim, Nagwa F. ; Mahmoud, Mohamed Metwally ; Thaiban, Ali M. H. Al ; Barnawi, Abdulwasa B. ; Elbarbary, Z. M. S. ; Omar, Ahmed Ibrahim ; Abdelfattah, Hany</creator><creatorcontrib>Ibrahim, Nagwa F. ; Mahmoud, Mohamed Metwally ; Thaiban, Ali M. H. Al ; Barnawi, Abdulwasa B. ; Elbarbary, Z. M. S. ; Omar, Ahmed Ibrahim ; Abdelfattah, Hany</creatorcontrib><description>The expanding use of photovoltaics (PV) as a green energy resource has been rising in these years, mostly due to the possibility of being incorporated with traditional power systems, to meet the world's energy needs and reduce carbon emissions. However, providing green electricity from this renewable generator is frequently vulnerable to power quality (PQ) disruptions resulting from the PV's intermittent nature and other factors associated with the electric grid, power converters, and linked loads. These disruptions need to be reduced to keep the investigated system's PQ from deteriorating. The investigated system includes PV, DC-DC, and DC-AC converters, filter, power grid, and control schemes. If the DC-DC converter is not managed, a deviation from the maximum power point (MPP) extrapolated from the PV system will take place. In order to maximize the energy harvested from the PV system by managing the DC-DC converter, this research developed two MPP tracking (MPPT) algorithms: artificial neural networks (ANN) and cuckoo search (CS). Additionally, a design and implementation for a shunt active power filter (LCL) using genetic algorithm and GRG is provided to lower the injected total harmonic distortion (THD) and thereby enhance the PQ. To achieve the smallest size of the LCL components, the generalized reduced gradient (GRG) was the best compared to genetic algorithms GA. The results of the simulation showed that ANN performed better at tracking maximum power than CS. With the designed LCL, the THD is reduced by 99.78% compared to without a filter. To verify the simulation's findings, a practical configuration is implemented.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3317980</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active filters ; Artificial neural network (ANN) ; Artificial neural networks ; Clean energy ; Computer simulation ; Cuckoo search (CS) ; Electric power grids ; Electric power systems ; Electricity distribution ; Emissions ; Energy sources ; Filtering algorithms ; Genetic algorithms ; Harmonic analysis ; Harmonic distortion ; Inverters ; LCL filter ; Maximum power ; MPPT ; Passive filters ; Photovoltaic cells ; Power converters ; Power harmonic filters ; Search algorithms ; total harmonic distortion (THD) ; Tracking ; Voltage converters (DC to DC)</subject><ispartof>IEEE access, 2023, Vol.11, p.106859-106876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-85a44064938678cce9aa7a70bbeed7ed2ab49cb9ef677f964abf96e9974893b93</citedby><cites>FETCH-LOGICAL-c409t-85a44064938678cce9aa7a70bbeed7ed2ab49cb9ef677f964abf96e9974893b93</cites><orcidid>0000-0002-0549-3591 ; 0000-0002-8117-7742 ; 0000-0003-3978-7245 ; 0000-0002-2460-1850 ; 0000-0003-1750-9244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10258260$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ibrahim, Nagwa F.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed Metwally</creatorcontrib><creatorcontrib>Thaiban, Ali M. H. Al</creatorcontrib><creatorcontrib>Barnawi, Abdulwasa B.</creatorcontrib><creatorcontrib>Elbarbary, Z. M. S.</creatorcontrib><creatorcontrib>Omar, Ahmed Ibrahim</creatorcontrib><creatorcontrib>Abdelfattah, Hany</creatorcontrib><title>Operation of Grid-Connected PV System With ANN-Based MPPT and an Optimized LCL Filter Using GRG Algorithm for Enhanced Power Quality</title><title>IEEE access</title><addtitle>Access</addtitle><description>The expanding use of photovoltaics (PV) as a green energy resource has been rising in these years, mostly due to the possibility of being incorporated with traditional power systems, to meet the world's energy needs and reduce carbon emissions. However, providing green electricity from this renewable generator is frequently vulnerable to power quality (PQ) disruptions resulting from the PV's intermittent nature and other factors associated with the electric grid, power converters, and linked loads. These disruptions need to be reduced to keep the investigated system's PQ from deteriorating. The investigated system includes PV, DC-DC, and DC-AC converters, filter, power grid, and control schemes. If the DC-DC converter is not managed, a deviation from the maximum power point (MPP) extrapolated from the PV system will take place. In order to maximize the energy harvested from the PV system by managing the DC-DC converter, this research developed two MPP tracking (MPPT) algorithms: artificial neural networks (ANN) and cuckoo search (CS). Additionally, a design and implementation for a shunt active power filter (LCL) using genetic algorithm and GRG is provided to lower the injected total harmonic distortion (THD) and thereby enhance the PQ. To achieve the smallest size of the LCL components, the generalized reduced gradient (GRG) was the best compared to genetic algorithms GA. The results of the simulation showed that ANN performed better at tracking maximum power than CS. With the designed LCL, the THD is reduced by 99.78% compared to without a filter. To verify the simulation's findings, a practical configuration is implemented.</description><subject>Active filters</subject><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Clean energy</subject><subject>Computer simulation</subject><subject>Cuckoo search (CS)</subject><subject>Electric power grids</subject><subject>Electric power systems</subject><subject>Electricity distribution</subject><subject>Emissions</subject><subject>Energy sources</subject><subject>Filtering algorithms</subject><subject>Genetic algorithms</subject><subject>Harmonic analysis</subject><subject>Harmonic distortion</subject><subject>Inverters</subject><subject>LCL filter</subject><subject>Maximum power</subject><subject>MPPT</subject><subject>Passive filters</subject><subject>Photovoltaic cells</subject><subject>Power converters</subject><subject>Power harmonic filters</subject><subject>Search algorithms</subject><subject>total harmonic distortion (THD)</subject><subject>Tracking</subject><subject>Voltage converters (DC to DC)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdFq2zAUNWOFlbZfsD0I9uxMlmxLesxMmhayJm3a7VFcy9epgmNlssLInvfhVeZSKri6l6N7zhGcJPmc0UmWUfVtWlWz9XrCKOMTzjOhJP2QnLOsVCkvePnx3fwpuRqGLY1HRqgQ58m_5R49BOt64loy97ZJK9f3aAI2ZPWTrI9DwB35ZcMzmd7dpd9hiA8_VqtHAn0Tiyz3we7s34guqgW5tl1AT54G22_I_GFOpt3G-cjekdZ5MuufoTcnafcnrt0foLPheJmctdANePXaL5Kn69ljdZMulvPbarpITU5VSGUBeU7LXHFZCmkMKgABgtY1YiOwYVDnytQK21KIVpU51PFGpUQuFa8Vv0huR93GwVbvvd2BP2oHVv8HnN9o8MGaDjVGzYwhV1A20dTUmTGSlsAAwNQgo9bXUWvv3e8DDkFv3cH38fuaScELmcvi5MjHLePdMHhs31wzqk_p6TE9fUpPv6YXWV9GlkXEdwxWSFZS_gJFUJYC</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ibrahim, Nagwa F.</creator><creator>Mahmoud, Mohamed Metwally</creator><creator>Thaiban, Ali M. H. Al</creator><creator>Barnawi, Abdulwasa B.</creator><creator>Elbarbary, Z. M. S.</creator><creator>Omar, Ahmed Ibrahim</creator><creator>Abdelfattah, Hany</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0549-3591</orcidid><orcidid>https://orcid.org/0000-0002-8117-7742</orcidid><orcidid>https://orcid.org/0000-0003-3978-7245</orcidid><orcidid>https://orcid.org/0000-0002-2460-1850</orcidid><orcidid>https://orcid.org/0000-0003-1750-9244</orcidid></search><sort><creationdate>2023</creationdate><title>Operation of Grid-Connected PV System With ANN-Based MPPT and an Optimized LCL Filter Using GRG Algorithm for Enhanced Power Quality</title><author>Ibrahim, Nagwa F. ; Mahmoud, Mohamed Metwally ; Thaiban, Ali M. H. Al ; Barnawi, Abdulwasa B. ; Elbarbary, Z. M. S. ; Omar, Ahmed Ibrahim ; Abdelfattah, Hany</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-85a44064938678cce9aa7a70bbeed7ed2ab49cb9ef677f964abf96e9974893b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active filters</topic><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Clean energy</topic><topic>Computer simulation</topic><topic>Cuckoo search (CS)</topic><topic>Electric power grids</topic><topic>Electric power systems</topic><topic>Electricity distribution</topic><topic>Emissions</topic><topic>Energy sources</topic><topic>Filtering algorithms</topic><topic>Genetic algorithms</topic><topic>Harmonic analysis</topic><topic>Harmonic distortion</topic><topic>Inverters</topic><topic>LCL filter</topic><topic>Maximum power</topic><topic>MPPT</topic><topic>Passive filters</topic><topic>Photovoltaic cells</topic><topic>Power converters</topic><topic>Power harmonic filters</topic><topic>Search algorithms</topic><topic>total harmonic distortion (THD)</topic><topic>Tracking</topic><topic>Voltage converters (DC to DC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Nagwa F.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed Metwally</creatorcontrib><creatorcontrib>Thaiban, Ali M. H. Al</creatorcontrib><creatorcontrib>Barnawi, Abdulwasa B.</creatorcontrib><creatorcontrib>Elbarbary, Z. M. S.</creatorcontrib><creatorcontrib>Omar, Ahmed Ibrahim</creatorcontrib><creatorcontrib>Abdelfattah, Hany</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahim, Nagwa F.</au><au>Mahmoud, Mohamed Metwally</au><au>Thaiban, Ali M. H. Al</au><au>Barnawi, Abdulwasa B.</au><au>Elbarbary, Z. M. S.</au><au>Omar, Ahmed Ibrahim</au><au>Abdelfattah, Hany</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operation of Grid-Connected PV System With ANN-Based MPPT and an Optimized LCL Filter Using GRG Algorithm for Enhanced Power Quality</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>106859</spage><epage>106876</epage><pages>106859-106876</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The expanding use of photovoltaics (PV) as a green energy resource has been rising in these years, mostly due to the possibility of being incorporated with traditional power systems, to meet the world's energy needs and reduce carbon emissions. However, providing green electricity from this renewable generator is frequently vulnerable to power quality (PQ) disruptions resulting from the PV's intermittent nature and other factors associated with the electric grid, power converters, and linked loads. These disruptions need to be reduced to keep the investigated system's PQ from deteriorating. The investigated system includes PV, DC-DC, and DC-AC converters, filter, power grid, and control schemes. If the DC-DC converter is not managed, a deviation from the maximum power point (MPP) extrapolated from the PV system will take place. In order to maximize the energy harvested from the PV system by managing the DC-DC converter, this research developed two MPP tracking (MPPT) algorithms: artificial neural networks (ANN) and cuckoo search (CS). Additionally, a design and implementation for a shunt active power filter (LCL) using genetic algorithm and GRG is provided to lower the injected total harmonic distortion (THD) and thereby enhance the PQ. To achieve the smallest size of the LCL components, the generalized reduced gradient (GRG) was the best compared to genetic algorithms GA. The results of the simulation showed that ANN performed better at tracking maximum power than CS. With the designed LCL, the THD is reduced by 99.78% compared to without a filter. To verify the simulation's findings, a practical configuration is implemented.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3317980</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0549-3591</orcidid><orcidid>https://orcid.org/0000-0002-8117-7742</orcidid><orcidid>https://orcid.org/0000-0003-3978-7245</orcidid><orcidid>https://orcid.org/0000-0002-2460-1850</orcidid><orcidid>https://orcid.org/0000-0003-1750-9244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.106859-106876
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2873584859
source IEEE Open Access Journals; TestCollectionTL3OpenAccess; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Active filters
Artificial neural network (ANN)
Artificial neural networks
Clean energy
Computer simulation
Cuckoo search (CS)
Electric power grids
Electric power systems
Electricity distribution
Emissions
Energy sources
Filtering algorithms
Genetic algorithms
Harmonic analysis
Harmonic distortion
Inverters
LCL filter
Maximum power
MPPT
Passive filters
Photovoltaic cells
Power converters
Power harmonic filters
Search algorithms
total harmonic distortion (THD)
Tracking
Voltage converters (DC to DC)
title Operation of Grid-Connected PV System With ANN-Based MPPT and an Optimized LCL Filter Using GRG Algorithm for Enhanced Power Quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operation%20of%20Grid-Connected%20PV%20System%20With%20ANN-Based%20MPPT%20and%20an%20Optimized%20LCL%20Filter%20Using%20GRG%20Algorithm%20for%20Enhanced%20Power%20Quality&rft.jtitle=IEEE%20access&rft.au=Ibrahim,%20Nagwa%20F.&rft.date=2023&rft.volume=11&rft.spage=106859&rft.epage=106876&rft.pages=106859-106876&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3317980&rft_dat=%3Cproquest_doaj_%3E2873584859%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873584859&rft_id=info:pmid/&rft_ieee_id=10258260&rft_doaj_id=oai_doaj_org_article_ebee12e39a6d440cb1cc806a2aaacba8&rfr_iscdi=true