Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye

All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanopa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2023-10, Vol.37 (10)
Hauptverfasser: Lemes, Nelson H. T., Santos, Taináh M. R., Tavares, Camila A., Virtuoso, Luciano S., Souza, Kelly A. S., Ramalho, Teodorico C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of chemometrics
container_volume 37
creator Lemes, Nelson H. T.
Santos, Taináh M. R.
Tavares, Camila A.
Virtuoso, Luciano S.
Souza, Kelly A. S.
Ramalho, Teodorico C.
description All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanoparticles has been a strategy employed to partially solve the signal‐to‐noise problem, the preprocessing of Raman spectral data through the use of mathematical filters has become an integral part of Raman spectroscopy analysis. In this paper, a Tikhonov modified method to remove random noise in experimental data is presented. In order to refine and improve the Tikhonov method as a filter, the proposed method includes Euclidean norm of the fractional‐order derivative of the solution as an additional criterion in Tikhonov function. In the strategy used here, the solution depends on the regularization parameter, , and on the fractional derivative order, . As will be demonstrated, with the algorithm presented here, it is possible to obtain a noise‐free spectrum without affecting the fidelity of the molecular signal. In this alternative, the fractional derivative works as a fine control parameter for the usual Tikhonov method. The proposed method was applied to simulated data and to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye in Ag nanoparticles colloidal dispersion.
doi_str_mv 10.1002/cem.3507
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873033022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873033022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-bcc2a9ef66221062b61ddfb2de449e0e8bc0161b2463705af2c3f728a230ddd23</originalsourceid><addsrcrecordid>eNotkd1KAzEQhYMoWKvgIwS8qeDW_NTt7qVI_YGCYBW8W2aTiY1uN2uSFnrnI_gUPphPYla9Gmbmm3MYDiHHnI05Y-Jc4WosL9h0hww4K8uMi-J5lwxYUeRZKQu5Tw5CeGUs7eRkQL4WK-fi0rYvFFpNtTUGPbbRQrSupc5QDRFovaWP9m3pWrf55YwH1QPQUI3ebhK9QRqda8IZha5rLOrU0rD2BhR-f3xiu4RWpekDrKClQUGM6TL5jhazh8UpDR2q6KG3VH4bYpLeWNdgpHqLh2TPQBPw6L8OydP17PHqNpvf39xdXc4zJXges1opASWaPBeCs1zUOdfa1ELjZFIiw6JWjOe8FpNcTtkFGKGkmYoChGRaayGH5ORPt_PufY0hVq9u7dOboRLFVDIpmeip0R-lvAvBo6k6b1fgtxVnVZ9ClVKo-hTkD469fog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873033022</pqid></control><display><type>article</type><title>Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lemes, Nelson H. T. ; Santos, Taináh M. R. ; Tavares, Camila A. ; Virtuoso, Luciano S. ; Souza, Kelly A. S. ; Ramalho, Teodorico C.</creator><creatorcontrib>Lemes, Nelson H. T. ; Santos, Taináh M. R. ; Tavares, Camila A. ; Virtuoso, Luciano S. ; Souza, Kelly A. S. ; Ramalho, Teodorico C.</creatorcontrib><description>All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanoparticles has been a strategy employed to partially solve the signal‐to‐noise problem, the preprocessing of Raman spectral data through the use of mathematical filters has become an integral part of Raman spectroscopy analysis. In this paper, a Tikhonov modified method to remove random noise in experimental data is presented. In order to refine and improve the Tikhonov method as a filter, the proposed method includes Euclidean norm of the fractional‐order derivative of the solution as an additional criterion in Tikhonov function. In the strategy used here, the solution depends on the regularization parameter, , and on the fractional derivative order, . As will be demonstrated, with the algorithm presented here, it is possible to obtain a noise‐free spectrum without affecting the fidelity of the molecular signal. In this alternative, the fractional derivative works as a fine control parameter for the usual Tikhonov method. The proposed method was applied to simulated data and to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye in Ag nanoparticles colloidal dispersion.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.3507</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Background noise ; Data smoothing ; Derivatives ; Dyes ; Mathematical filters ; Nanoparticles ; Parameters ; Raman spectra ; Raman spectroscopy ; Random noise ; Regularization ; Spectroscopy ; Spectrum analysis</subject><ispartof>Journal of chemometrics, 2023-10, Vol.37 (10)</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-bcc2a9ef66221062b61ddfb2de449e0e8bc0161b2463705af2c3f728a230ddd23</cites><orcidid>0000-0002-1309-542X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lemes, Nelson H. T.</creatorcontrib><creatorcontrib>Santos, Taináh M. R.</creatorcontrib><creatorcontrib>Tavares, Camila A.</creatorcontrib><creatorcontrib>Virtuoso, Luciano S.</creatorcontrib><creatorcontrib>Souza, Kelly A. S.</creatorcontrib><creatorcontrib>Ramalho, Teodorico C.</creatorcontrib><title>Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye</title><title>Journal of chemometrics</title><description>All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanoparticles has been a strategy employed to partially solve the signal‐to‐noise problem, the preprocessing of Raman spectral data through the use of mathematical filters has become an integral part of Raman spectroscopy analysis. In this paper, a Tikhonov modified method to remove random noise in experimental data is presented. In order to refine and improve the Tikhonov method as a filter, the proposed method includes Euclidean norm of the fractional‐order derivative of the solution as an additional criterion in Tikhonov function. In the strategy used here, the solution depends on the regularization parameter, , and on the fractional derivative order, . As will be demonstrated, with the algorithm presented here, it is possible to obtain a noise‐free spectrum without affecting the fidelity of the molecular signal. In this alternative, the fractional derivative works as a fine control parameter for the usual Tikhonov method. The proposed method was applied to simulated data and to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye in Ag nanoparticles colloidal dispersion.</description><subject>Algorithms</subject><subject>Background noise</subject><subject>Data smoothing</subject><subject>Derivatives</subject><subject>Dyes</subject><subject>Mathematical filters</subject><subject>Nanoparticles</subject><subject>Parameters</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Random noise</subject><subject>Regularization</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkd1KAzEQhYMoWKvgIwS8qeDW_NTt7qVI_YGCYBW8W2aTiY1uN2uSFnrnI_gUPphPYla9Gmbmm3MYDiHHnI05Y-Jc4WosL9h0hww4K8uMi-J5lwxYUeRZKQu5Tw5CeGUs7eRkQL4WK-fi0rYvFFpNtTUGPbbRQrSupc5QDRFovaWP9m3pWrf55YwH1QPQUI3ebhK9QRqda8IZha5rLOrU0rD2BhR-f3xiu4RWpekDrKClQUGM6TL5jhazh8UpDR2q6KG3VH4bYpLeWNdgpHqLh2TPQBPw6L8OydP17PHqNpvf39xdXc4zJXges1opASWaPBeCs1zUOdfa1ELjZFIiw6JWjOe8FpNcTtkFGKGkmYoChGRaayGH5ORPt_PufY0hVq9u7dOboRLFVDIpmeip0R-lvAvBo6k6b1fgtxVnVZ9ClVKo-hTkD469fog</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Lemes, Nelson H. T.</creator><creator>Santos, Taináh M. R.</creator><creator>Tavares, Camila A.</creator><creator>Virtuoso, Luciano S.</creator><creator>Souza, Kelly A. S.</creator><creator>Ramalho, Teodorico C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1309-542X</orcidid></search><sort><creationdate>202310</creationdate><title>Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye</title><author>Lemes, Nelson H. T. ; Santos, Taináh M. R. ; Tavares, Camila A. ; Virtuoso, Luciano S. ; Souza, Kelly A. S. ; Ramalho, Teodorico C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-bcc2a9ef66221062b61ddfb2de449e0e8bc0161b2463705af2c3f728a230ddd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Background noise</topic><topic>Data smoothing</topic><topic>Derivatives</topic><topic>Dyes</topic><topic>Mathematical filters</topic><topic>Nanoparticles</topic><topic>Parameters</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Random noise</topic><topic>Regularization</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemes, Nelson H. T.</creatorcontrib><creatorcontrib>Santos, Taináh M. R.</creatorcontrib><creatorcontrib>Tavares, Camila A.</creatorcontrib><creatorcontrib>Virtuoso, Luciano S.</creatorcontrib><creatorcontrib>Souza, Kelly A. S.</creatorcontrib><creatorcontrib>Ramalho, Teodorico C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemes, Nelson H. T.</au><au>Santos, Taináh M. R.</au><au>Tavares, Camila A.</au><au>Virtuoso, Luciano S.</au><au>Souza, Kelly A. S.</au><au>Ramalho, Teodorico C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye</atitle><jtitle>Journal of chemometrics</jtitle><date>2023-10</date><risdate>2023</risdate><volume>37</volume><issue>10</issue><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanoparticles has been a strategy employed to partially solve the signal‐to‐noise problem, the preprocessing of Raman spectral data through the use of mathematical filters has become an integral part of Raman spectroscopy analysis. In this paper, a Tikhonov modified method to remove random noise in experimental data is presented. In order to refine and improve the Tikhonov method as a filter, the proposed method includes Euclidean norm of the fractional‐order derivative of the solution as an additional criterion in Tikhonov function. In the strategy used here, the solution depends on the regularization parameter, , and on the fractional derivative order, . As will be demonstrated, with the algorithm presented here, it is possible to obtain a noise‐free spectrum without affecting the fidelity of the molecular signal. In this alternative, the fractional derivative works as a fine control parameter for the usual Tikhonov method. The proposed method was applied to simulated data and to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye in Ag nanoparticles colloidal dispersion.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cem.3507</doi><orcidid>https://orcid.org/0000-0002-1309-542X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2023-10, Vol.37 (10)
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_journals_2873033022
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Background noise
Data smoothing
Derivatives
Dyes
Mathematical filters
Nanoparticles
Parameters
Raman spectra
Raman spectroscopy
Random noise
Regularization
Spectroscopy
Spectrum analysis
title Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smoothing%20and%20differentiation%20of%20data%20by%20Tikhonov%20and%20fractional%20derivative%20tools,%20applied%20to%20surface%E2%80%90enhanced%20Raman%20scattering%20(SERS)%20spectra%20of%20crystal%20violet%20dye&rft.jtitle=Journal%20of%20chemometrics&rft.au=Lemes,%20Nelson%20H.%20T.&rft.date=2023-10&rft.volume=37&rft.issue=10&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.3507&rft_dat=%3Cproquest_cross%3E2873033022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873033022&rft_id=info:pmid/&rfr_iscdi=true