Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye
All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanopa...
Gespeichert in:
Veröffentlicht in: | Journal of chemometrics 2023-10, Vol.37 (10) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of chemometrics |
container_volume | 37 |
creator | Lemes, Nelson H. T. Santos, Taináh M. R. Tavares, Camila A. Virtuoso, Luciano S. Souza, Kelly A. S. Ramalho, Teodorico C. |
description | All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanoparticles has been a strategy employed to partially solve the signal‐to‐noise problem, the preprocessing of Raman spectral data through the use of mathematical filters has become an integral part of Raman spectroscopy analysis. In this paper, a Tikhonov modified method to remove random noise in experimental data is presented. In order to refine and improve the Tikhonov method as a filter, the proposed method includes Euclidean norm of the fractional‐order derivative of the solution as an additional criterion in Tikhonov function. In the strategy used here, the solution depends on the regularization parameter,
, and on the fractional derivative order,
. As will be demonstrated, with the algorithm presented here, it is possible to obtain a noise‐free spectrum without affecting the fidelity of the molecular signal. In this alternative, the fractional derivative works as a fine control parameter for the usual Tikhonov method. The proposed method was applied to simulated data and to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye in Ag nanoparticles colloidal dispersion. |
doi_str_mv | 10.1002/cem.3507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873033022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873033022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-bcc2a9ef66221062b61ddfb2de449e0e8bc0161b2463705af2c3f728a230ddd23</originalsourceid><addsrcrecordid>eNotkd1KAzEQhYMoWKvgIwS8qeDW_NTt7qVI_YGCYBW8W2aTiY1uN2uSFnrnI_gUPphPYla9Gmbmm3MYDiHHnI05Y-Jc4WosL9h0hww4K8uMi-J5lwxYUeRZKQu5Tw5CeGUs7eRkQL4WK-fi0rYvFFpNtTUGPbbRQrSupc5QDRFovaWP9m3pWrf55YwH1QPQUI3ebhK9QRqda8IZha5rLOrU0rD2BhR-f3xiu4RWpekDrKClQUGM6TL5jhazh8UpDR2q6KG3VH4bYpLeWNdgpHqLh2TPQBPw6L8OydP17PHqNpvf39xdXc4zJXges1opASWaPBeCs1zUOdfa1ELjZFIiw6JWjOe8FpNcTtkFGKGkmYoChGRaayGH5ORPt_PufY0hVq9u7dOboRLFVDIpmeip0R-lvAvBo6k6b1fgtxVnVZ9ClVKo-hTkD469fog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873033022</pqid></control><display><type>article</type><title>Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lemes, Nelson H. T. ; Santos, Taináh M. R. ; Tavares, Camila A. ; Virtuoso, Luciano S. ; Souza, Kelly A. S. ; Ramalho, Teodorico C.</creator><creatorcontrib>Lemes, Nelson H. T. ; Santos, Taináh M. R. ; Tavares, Camila A. ; Virtuoso, Luciano S. ; Souza, Kelly A. S. ; Ramalho, Teodorico C.</creatorcontrib><description>All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanoparticles has been a strategy employed to partially solve the signal‐to‐noise problem, the preprocessing of Raman spectral data through the use of mathematical filters has become an integral part of Raman spectroscopy analysis. In this paper, a Tikhonov modified method to remove random noise in experimental data is presented. In order to refine and improve the Tikhonov method as a filter, the proposed method includes Euclidean norm of the fractional‐order derivative of the solution as an additional criterion in Tikhonov function. In the strategy used here, the solution depends on the regularization parameter,
, and on the fractional derivative order,
. As will be demonstrated, with the algorithm presented here, it is possible to obtain a noise‐free spectrum without affecting the fidelity of the molecular signal. In this alternative, the fractional derivative works as a fine control parameter for the usual Tikhonov method. The proposed method was applied to simulated data and to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye in Ag nanoparticles colloidal dispersion.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.3507</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Background noise ; Data smoothing ; Derivatives ; Dyes ; Mathematical filters ; Nanoparticles ; Parameters ; Raman spectra ; Raman spectroscopy ; Random noise ; Regularization ; Spectroscopy ; Spectrum analysis</subject><ispartof>Journal of chemometrics, 2023-10, Vol.37 (10)</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-bcc2a9ef66221062b61ddfb2de449e0e8bc0161b2463705af2c3f728a230ddd23</cites><orcidid>0000-0002-1309-542X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lemes, Nelson H. T.</creatorcontrib><creatorcontrib>Santos, Taináh M. R.</creatorcontrib><creatorcontrib>Tavares, Camila A.</creatorcontrib><creatorcontrib>Virtuoso, Luciano S.</creatorcontrib><creatorcontrib>Souza, Kelly A. S.</creatorcontrib><creatorcontrib>Ramalho, Teodorico C.</creatorcontrib><title>Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye</title><title>Journal of chemometrics</title><description>All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanoparticles has been a strategy employed to partially solve the signal‐to‐noise problem, the preprocessing of Raman spectral data through the use of mathematical filters has become an integral part of Raman spectroscopy analysis. In this paper, a Tikhonov modified method to remove random noise in experimental data is presented. In order to refine and improve the Tikhonov method as a filter, the proposed method includes Euclidean norm of the fractional‐order derivative of the solution as an additional criterion in Tikhonov function. In the strategy used here, the solution depends on the regularization parameter,
, and on the fractional derivative order,
. As will be demonstrated, with the algorithm presented here, it is possible to obtain a noise‐free spectrum without affecting the fidelity of the molecular signal. In this alternative, the fractional derivative works as a fine control parameter for the usual Tikhonov method. The proposed method was applied to simulated data and to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye in Ag nanoparticles colloidal dispersion.</description><subject>Algorithms</subject><subject>Background noise</subject><subject>Data smoothing</subject><subject>Derivatives</subject><subject>Dyes</subject><subject>Mathematical filters</subject><subject>Nanoparticles</subject><subject>Parameters</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Random noise</subject><subject>Regularization</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkd1KAzEQhYMoWKvgIwS8qeDW_NTt7qVI_YGCYBW8W2aTiY1uN2uSFnrnI_gUPphPYla9Gmbmm3MYDiHHnI05Y-Jc4WosL9h0hww4K8uMi-J5lwxYUeRZKQu5Tw5CeGUs7eRkQL4WK-fi0rYvFFpNtTUGPbbRQrSupc5QDRFovaWP9m3pWrf55YwH1QPQUI3ebhK9QRqda8IZha5rLOrU0rD2BhR-f3xiu4RWpekDrKClQUGM6TL5jhazh8UpDR2q6KG3VH4bYpLeWNdgpHqLh2TPQBPw6L8OydP17PHqNpvf39xdXc4zJXges1opASWaPBeCs1zUOdfa1ELjZFIiw6JWjOe8FpNcTtkFGKGkmYoChGRaayGH5ORPt_PufY0hVq9u7dOboRLFVDIpmeip0R-lvAvBo6k6b1fgtxVnVZ9ClVKo-hTkD469fog</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Lemes, Nelson H. T.</creator><creator>Santos, Taináh M. R.</creator><creator>Tavares, Camila A.</creator><creator>Virtuoso, Luciano S.</creator><creator>Souza, Kelly A. S.</creator><creator>Ramalho, Teodorico C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1309-542X</orcidid></search><sort><creationdate>202310</creationdate><title>Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye</title><author>Lemes, Nelson H. T. ; Santos, Taináh M. R. ; Tavares, Camila A. ; Virtuoso, Luciano S. ; Souza, Kelly A. S. ; Ramalho, Teodorico C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-bcc2a9ef66221062b61ddfb2de449e0e8bc0161b2463705af2c3f728a230ddd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Background noise</topic><topic>Data smoothing</topic><topic>Derivatives</topic><topic>Dyes</topic><topic>Mathematical filters</topic><topic>Nanoparticles</topic><topic>Parameters</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Random noise</topic><topic>Regularization</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemes, Nelson H. T.</creatorcontrib><creatorcontrib>Santos, Taináh M. R.</creatorcontrib><creatorcontrib>Tavares, Camila A.</creatorcontrib><creatorcontrib>Virtuoso, Luciano S.</creatorcontrib><creatorcontrib>Souza, Kelly A. S.</creatorcontrib><creatorcontrib>Ramalho, Teodorico C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemes, Nelson H. T.</au><au>Santos, Taináh M. R.</au><au>Tavares, Camila A.</au><au>Virtuoso, Luciano S.</au><au>Souza, Kelly A. S.</au><au>Ramalho, Teodorico C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye</atitle><jtitle>Journal of chemometrics</jtitle><date>2023-10</date><risdate>2023</risdate><volume>37</volume><issue>10</issue><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>All signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanoparticles has been a strategy employed to partially solve the signal‐to‐noise problem, the preprocessing of Raman spectral data through the use of mathematical filters has become an integral part of Raman spectroscopy analysis. In this paper, a Tikhonov modified method to remove random noise in experimental data is presented. In order to refine and improve the Tikhonov method as a filter, the proposed method includes Euclidean norm of the fractional‐order derivative of the solution as an additional criterion in Tikhonov function. In the strategy used here, the solution depends on the regularization parameter,
, and on the fractional derivative order,
. As will be demonstrated, with the algorithm presented here, it is possible to obtain a noise‐free spectrum without affecting the fidelity of the molecular signal. In this alternative, the fractional derivative works as a fine control parameter for the usual Tikhonov method. The proposed method was applied to simulated data and to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye in Ag nanoparticles colloidal dispersion.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cem.3507</doi><orcidid>https://orcid.org/0000-0002-1309-542X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2023-10, Vol.37 (10) |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_proquest_journals_2873033022 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Background noise Data smoothing Derivatives Dyes Mathematical filters Nanoparticles Parameters Raman spectra Raman spectroscopy Random noise Regularization Spectroscopy Spectrum analysis |
title | Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smoothing%20and%20differentiation%20of%20data%20by%20Tikhonov%20and%20fractional%20derivative%20tools,%20applied%20to%20surface%E2%80%90enhanced%20Raman%20scattering%20(SERS)%20spectra%20of%20crystal%20violet%20dye&rft.jtitle=Journal%20of%20chemometrics&rft.au=Lemes,%20Nelson%20H.%20T.&rft.date=2023-10&rft.volume=37&rft.issue=10&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.3507&rft_dat=%3Cproquest_cross%3E2873033022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873033022&rft_id=info:pmid/&rfr_iscdi=true |