Selection of principal variables through a modified Gram–Schmidt process with and without supervision

In various situations requiring empirical model building from highly multivariate measurements, modelling based on partial least squares regression (PLSR) may often provide efficient low‐dimensional model solutions. In unsupervised situations, the same may be true for principal component analysis (P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2023-10, Vol.37 (10)
Hauptverfasser: Skogholt, Joakim, Liland, Kristian H., Næs, Tormod, Smilde, Age K., Indahl, Ulf G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of chemometrics
container_volume 37
creator Skogholt, Joakim
Liland, Kristian H.
Næs, Tormod
Smilde, Age K.
Indahl, Ulf G.
description In various situations requiring empirical model building from highly multivariate measurements, modelling based on partial least squares regression (PLSR) may often provide efficient low‐dimensional model solutions. In unsupervised situations, the same may be true for principal component analysis (PCA). In both cases, however, it is also of interest to identify subsets of the measured variables useful for obtaining sparser but still comparable models without significant loss of information and performance. In the present paper, we propose a voting approach for sparse overall maximisation of variance analogous to PCA and a similar alternative for deriving sparse regression models influenced closely related to the PLSR method. Both cases yield pivoting strategies for a modified Gram–Schmidt process and its corresponding (partial) QR‐factorisation of the underlying data matrix to manage the variable selection process. The proposed methods include score and loading plot possibilities that are acknowledged for providing efficient interpretations of the related PCA and PLS models in chemometric applications. The article discusses two variable selection methods ‐ Principal variable selection (PVS) for unsupervised learning, and Principal regression variables (PRV) for supervised learning. Both methods select variables in a greedy manner based on a voting procedure, and yield pivoting strategies for a modified Gram‐Schmidt process and its corresponding (partial) QR‐factorisation of the underlying data matrix. The proposed methods include score‐ and loading plot possibilities.
doi_str_mv 10.1002/cem.3510
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873032962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873032962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-c4a4034cc3cc920aadb5652f77ddd86cd63f3ce0a8ac5f03d94288081e0faba83</originalsourceid><addsrcrecordid>eNotkMFKAzEQhoMoWKvgIwS8eNk6SXa32aMUrULBQxW8LekkaVN2NzXZVbz5Dr6hT2JqPc3AfPPPPz8hlwwmDIDfoGknomBwREYMqipjXL4ekxFIWWaVkOKUnMW4BUgzkY_Iemkag73zHfWW7oLr0O1UQ99VcGrVmEj7TfDDekMVbb121hlN50G1P1_fS9y0Tvdpy6OJkX64PmGd_mv80NM47Ex4dzGpn5MTq5poLv7rmLzc3z3PHrLF0_xxdrvIkBfQZ5irHESOKBArDkrpVVEW3E6nWmtZoi6FFWhASYWFBaGrnEsJkhmwaqWkGJOrg24y9TaY2NdbP4Qunay5nAoQvCp5oq4PFAYfYzC2Tp-3KnzWDOp9jHWKsd7HKH4BR01oqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873032962</pqid></control><display><type>article</type><title>Selection of principal variables through a modified Gram–Schmidt process with and without supervision</title><source>Wiley Journals</source><creator>Skogholt, Joakim ; Liland, Kristian H. ; Næs, Tormod ; Smilde, Age K. ; Indahl, Ulf G.</creator><creatorcontrib>Skogholt, Joakim ; Liland, Kristian H. ; Næs, Tormod ; Smilde, Age K. ; Indahl, Ulf G.</creatorcontrib><description>In various situations requiring empirical model building from highly multivariate measurements, modelling based on partial least squares regression (PLSR) may often provide efficient low‐dimensional model solutions. In unsupervised situations, the same may be true for principal component analysis (PCA). In both cases, however, it is also of interest to identify subsets of the measured variables useful for obtaining sparser but still comparable models without significant loss of information and performance. In the present paper, we propose a voting approach for sparse overall maximisation of variance analogous to PCA and a similar alternative for deriving sparse regression models influenced closely related to the PLSR method. Both cases yield pivoting strategies for a modified Gram–Schmidt process and its corresponding (partial) QR‐factorisation of the underlying data matrix to manage the variable selection process. The proposed methods include score and loading plot possibilities that are acknowledged for providing efficient interpretations of the related PCA and PLS models in chemometric applications. The article discusses two variable selection methods ‐ Principal variable selection (PVS) for unsupervised learning, and Principal regression variables (PRV) for supervised learning. Both methods select variables in a greedy manner based on a voting procedure, and yield pivoting strategies for a modified Gram‐Schmidt process and its corresponding (partial) QR‐factorisation of the underlying data matrix. The proposed methods include score‐ and loading plot possibilities.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.3510</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Empirical analysis ; Least squares method ; Principal components analysis ; Regression models</subject><ispartof>Journal of chemometrics, 2023-10, Vol.37 (10)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-c4a4034cc3cc920aadb5652f77ddd86cd63f3ce0a8ac5f03d94288081e0faba83</cites><orcidid>0000-0002-3052-4644 ; 0000-0002-3236-463X ; 0000-0001-6468-9423 ; 0000-0001-5610-3955 ; 0000-0001-8511-993X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Skogholt, Joakim</creatorcontrib><creatorcontrib>Liland, Kristian H.</creatorcontrib><creatorcontrib>Næs, Tormod</creatorcontrib><creatorcontrib>Smilde, Age K.</creatorcontrib><creatorcontrib>Indahl, Ulf G.</creatorcontrib><title>Selection of principal variables through a modified Gram–Schmidt process with and without supervision</title><title>Journal of chemometrics</title><description>In various situations requiring empirical model building from highly multivariate measurements, modelling based on partial least squares regression (PLSR) may often provide efficient low‐dimensional model solutions. In unsupervised situations, the same may be true for principal component analysis (PCA). In both cases, however, it is also of interest to identify subsets of the measured variables useful for obtaining sparser but still comparable models without significant loss of information and performance. In the present paper, we propose a voting approach for sparse overall maximisation of variance analogous to PCA and a similar alternative for deriving sparse regression models influenced closely related to the PLSR method. Both cases yield pivoting strategies for a modified Gram–Schmidt process and its corresponding (partial) QR‐factorisation of the underlying data matrix to manage the variable selection process. The proposed methods include score and loading plot possibilities that are acknowledged for providing efficient interpretations of the related PCA and PLS models in chemometric applications. The article discusses two variable selection methods ‐ Principal variable selection (PVS) for unsupervised learning, and Principal regression variables (PRV) for supervised learning. Both methods select variables in a greedy manner based on a voting procedure, and yield pivoting strategies for a modified Gram‐Schmidt process and its corresponding (partial) QR‐factorisation of the underlying data matrix. The proposed methods include score‐ and loading plot possibilities.</description><subject>Empirical analysis</subject><subject>Least squares method</subject><subject>Principal components analysis</subject><subject>Regression models</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEQhoMoWKvgIwS8eNk6SXa32aMUrULBQxW8LekkaVN2NzXZVbz5Dr6hT2JqPc3AfPPPPz8hlwwmDIDfoGknomBwREYMqipjXL4ekxFIWWaVkOKUnMW4BUgzkY_Iemkag73zHfWW7oLr0O1UQ99VcGrVmEj7TfDDekMVbb121hlN50G1P1_fS9y0Tvdpy6OJkX64PmGd_mv80NM47Ex4dzGpn5MTq5poLv7rmLzc3z3PHrLF0_xxdrvIkBfQZ5irHESOKBArDkrpVVEW3E6nWmtZoi6FFWhASYWFBaGrnEsJkhmwaqWkGJOrg24y9TaY2NdbP4Qunay5nAoQvCp5oq4PFAYfYzC2Tp-3KnzWDOp9jHWKsd7HKH4BR01oqA</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Skogholt, Joakim</creator><creator>Liland, Kristian H.</creator><creator>Næs, Tormod</creator><creator>Smilde, Age K.</creator><creator>Indahl, Ulf G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3052-4644</orcidid><orcidid>https://orcid.org/0000-0002-3236-463X</orcidid><orcidid>https://orcid.org/0000-0001-6468-9423</orcidid><orcidid>https://orcid.org/0000-0001-5610-3955</orcidid><orcidid>https://orcid.org/0000-0001-8511-993X</orcidid></search><sort><creationdate>202310</creationdate><title>Selection of principal variables through a modified Gram–Schmidt process with and without supervision</title><author>Skogholt, Joakim ; Liland, Kristian H. ; Næs, Tormod ; Smilde, Age K. ; Indahl, Ulf G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-c4a4034cc3cc920aadb5652f77ddd86cd63f3ce0a8ac5f03d94288081e0faba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Empirical analysis</topic><topic>Least squares method</topic><topic>Principal components analysis</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skogholt, Joakim</creatorcontrib><creatorcontrib>Liland, Kristian H.</creatorcontrib><creatorcontrib>Næs, Tormod</creatorcontrib><creatorcontrib>Smilde, Age K.</creatorcontrib><creatorcontrib>Indahl, Ulf G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skogholt, Joakim</au><au>Liland, Kristian H.</au><au>Næs, Tormod</au><au>Smilde, Age K.</au><au>Indahl, Ulf G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of principal variables through a modified Gram–Schmidt process with and without supervision</atitle><jtitle>Journal of chemometrics</jtitle><date>2023-10</date><risdate>2023</risdate><volume>37</volume><issue>10</issue><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>In various situations requiring empirical model building from highly multivariate measurements, modelling based on partial least squares regression (PLSR) may often provide efficient low‐dimensional model solutions. In unsupervised situations, the same may be true for principal component analysis (PCA). In both cases, however, it is also of interest to identify subsets of the measured variables useful for obtaining sparser but still comparable models without significant loss of information and performance. In the present paper, we propose a voting approach for sparse overall maximisation of variance analogous to PCA and a similar alternative for deriving sparse regression models influenced closely related to the PLSR method. Both cases yield pivoting strategies for a modified Gram–Schmidt process and its corresponding (partial) QR‐factorisation of the underlying data matrix to manage the variable selection process. The proposed methods include score and loading plot possibilities that are acknowledged for providing efficient interpretations of the related PCA and PLS models in chemometric applications. The article discusses two variable selection methods ‐ Principal variable selection (PVS) for unsupervised learning, and Principal regression variables (PRV) for supervised learning. Both methods select variables in a greedy manner based on a voting procedure, and yield pivoting strategies for a modified Gram‐Schmidt process and its corresponding (partial) QR‐factorisation of the underlying data matrix. The proposed methods include score‐ and loading plot possibilities.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cem.3510</doi><orcidid>https://orcid.org/0000-0002-3052-4644</orcidid><orcidid>https://orcid.org/0000-0002-3236-463X</orcidid><orcidid>https://orcid.org/0000-0001-6468-9423</orcidid><orcidid>https://orcid.org/0000-0001-5610-3955</orcidid><orcidid>https://orcid.org/0000-0001-8511-993X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2023-10, Vol.37 (10)
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_journals_2873032962
source Wiley Journals
subjects Empirical analysis
Least squares method
Principal components analysis
Regression models
title Selection of principal variables through a modified Gram–Schmidt process with and without supervision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20principal%20variables%20through%20a%20modified%20Gram%E2%80%93Schmidt%20process%20with%20and%20without%20supervision&rft.jtitle=Journal%20of%20chemometrics&rft.au=Skogholt,%20Joakim&rft.date=2023-10&rft.volume=37&rft.issue=10&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.3510&rft_dat=%3Cproquest_cross%3E2873032962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873032962&rft_id=info:pmid/&rfr_iscdi=true