Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis

Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis, this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-10, Vol.120 (40)
Hauptverfasser: Brogan, Anna P, Habib, Cameron, Hobbs, Samuel J, Kranzusch, Philip J, Rudner, David Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 40
container_start_page
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Brogan, Anna P
Habib, Cameron
Hobbs, Samuel J
Kranzusch, Philip J
Rudner, David Z
description Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis, this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted β-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI–SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways.
doi_str_mv 10.1073/pnas.231086212
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2873010912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873010912</sourcerecordid><originalsourceid>FETCH-proquest_journals_28730109123</originalsourceid><addsrcrecordid>eNqNjjtvwkAQhE8okXAeLfVK1Ia9s8F2SSIiCjro0YIXdMjeg3sU_Ps4UoqUqUaf5htplJponGmsivlNKMxMobFeGm1GKtPY6HxZNvikMkRT5XVpyrF6CeGKiM2ixkwdP-gU2VvqYLdebaF1PVkJkKRlf3FAKbqbd5Fd9wg2AEkL5ySnaJ2AFfB8SR1FbgeInnruj56E4c_mTT2fqQv8_puvavq13n9u8sG5Jw7xcHXJy1AdTF0V-HPbFP-zvgElCE1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873010912</pqid></control><display><type>article</type><title>Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Brogan, Anna P ; Habib, Cameron ; Hobbs, Samuel J ; Kranzusch, Philip J ; Rudner, David Z</creator><creatorcontrib>Brogan, Anna P ; Habib, Cameron ; Hobbs, Samuel J ; Kranzusch, Philip J ; Rudner, David Z</creatorcontrib><description>Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis, this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted β-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI–SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.231086212</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Bacteria ; Cell walls ; Cleavage ; Gram-positive bacteria ; Mechanotransduction ; Membranes ; Polysaccharides ; Protease ; Proteolysis ; Saccharides ; Sigma factor ; Signal transduction ; Structure-function relationships</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-10, Vol.120 (40)</ispartof><rights>Copyright National Academy of Sciences Oct 3, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Brogan, Anna P</creatorcontrib><creatorcontrib>Habib, Cameron</creatorcontrib><creatorcontrib>Hobbs, Samuel J</creatorcontrib><creatorcontrib>Kranzusch, Philip J</creatorcontrib><creatorcontrib>Rudner, David Z</creatorcontrib><title>Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis, this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted β-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI–SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways.</description><subject>Bacteria</subject><subject>Cell walls</subject><subject>Cleavage</subject><subject>Gram-positive bacteria</subject><subject>Mechanotransduction</subject><subject>Membranes</subject><subject>Polysaccharides</subject><subject>Protease</subject><subject>Proteolysis</subject><subject>Saccharides</subject><subject>Sigma factor</subject><subject>Signal transduction</subject><subject>Structure-function relationships</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjjtvwkAQhE8okXAeLfVK1Ia9s8F2SSIiCjro0YIXdMjeg3sU_Ps4UoqUqUaf5htplJponGmsivlNKMxMobFeGm1GKtPY6HxZNvikMkRT5XVpyrF6CeGKiM2ixkwdP-gU2VvqYLdebaF1PVkJkKRlf3FAKbqbd5Fd9wg2AEkL5ySnaJ2AFfB8SR1FbgeInnruj56E4c_mTT2fqQv8_puvavq13n9u8sG5Jw7xcHXJy1AdTF0V-HPbFP-zvgElCE1g</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Brogan, Anna P</creator><creator>Habib, Cameron</creator><creator>Hobbs, Samuel J</creator><creator>Kranzusch, Philip J</creator><creator>Rudner, David Z</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20231003</creationdate><title>Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis</title><author>Brogan, Anna P ; Habib, Cameron ; Hobbs, Samuel J ; Kranzusch, Philip J ; Rudner, David Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28730109123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bacteria</topic><topic>Cell walls</topic><topic>Cleavage</topic><topic>Gram-positive bacteria</topic><topic>Mechanotransduction</topic><topic>Membranes</topic><topic>Polysaccharides</topic><topic>Protease</topic><topic>Proteolysis</topic><topic>Saccharides</topic><topic>Sigma factor</topic><topic>Signal transduction</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brogan, Anna P</creatorcontrib><creatorcontrib>Habib, Cameron</creatorcontrib><creatorcontrib>Hobbs, Samuel J</creatorcontrib><creatorcontrib>Kranzusch, Philip J</creatorcontrib><creatorcontrib>Rudner, David Z</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brogan, Anna P</au><au>Habib, Cameron</au><au>Hobbs, Samuel J</au><au>Kranzusch, Philip J</au><au>Rudner, David Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2023-10-03</date><risdate>2023</risdate><volume>120</volume><issue>40</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis, this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted β-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI–SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.231086212</doi></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-10, Vol.120 (40)
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_2873010912
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacteria
Cell walls
Cleavage
Gram-positive bacteria
Mechanotransduction
Membranes
Polysaccharides
Protease
Proteolysis
Saccharides
Sigma factor
Signal transduction
Structure-function relationships
title Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20SEAL%20domains%20undergo%20autoproteolysis%20and%20function%20in%20regulated%20intramembrane%20proteolysis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Brogan,%20Anna%20P&rft.date=2023-10-03&rft.volume=120&rft.issue=40&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.231086212&rft_dat=%3Cproquest%3E2873010912%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873010912&rft_id=info:pmid/&rfr_iscdi=true