A modified multivariate spectral gradient projection method for nonlinear complementarity problems
We present a sufficient condition for monotonicity of the nonlinear nonsmooth system generated by Fischer–Burmeister function associated with nonlinear complementarity problem. Based on the presented condition, the nonlinear complementarity problem considered in this paper is equivalently formulated...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2023-12, Vol.42 (8), Article 323 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 42 |
creator | Peng, Zheng Zhang, Xu Yao, Zhiqiang |
description | We present a sufficient condition for monotonicity of the nonlinear nonsmooth system generated by Fischer–Burmeister function associated with nonlinear complementarity problem. Based on the presented condition, the nonlinear complementarity problem considered in this paper is equivalently formulated to a nonsmooth monotone system. We then propose a modified multivariate spectral gradient projection method for the resulting system, and establish the global convergence without smoothness and Lipschitz condition. Preliminary numerical experiments show that, compared to some existing methods, the proposed method is effective. |
doi_str_mv | 10.1007/s40314-023-02465-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872911977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872911977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4ec4545190d36894b325e585d8f6d22c6ef4fd55d1e0c049027b37d6fb97bff43</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19WbV9Muh8EXDLjRdWibZMzQNjXJOMy_N1rBnYvL5V6-cw4chK4J3BIAeRc5MMILoCwPL0VxOEELUoEsgAE9RQtKWVWwEtg5uohxB8Ak4XyB2hUevHbWGY2HfZ_cZxNckwyOk-lSaHq8DY12Zkx4Cn6Xf86PeDDp3WtsfcCjH3s3mibgzg9Tb4aMZot0_ObbfMdLdGabPpqr371Ebw_3r-unYvPy-LxebYqOSkgFNx0XXJAaNCurmreMCiMqoStbakq70lhutRCaGOiA10Bly6QubVvL1lrOluhm9s3BH3sTk9r5fRhzpKKVpDUhtZSZojPVBR9jMFZNwQ1NOCoC6rtLNXepcpfqp0t1yCI2i2KGx60Jf9b_qL4AlAV5pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872911977</pqid></control><display><type>article</type><title>A modified multivariate spectral gradient projection method for nonlinear complementarity problems</title><source>SpringerNature Journals</source><creator>Peng, Zheng ; Zhang, Xu ; Yao, Zhiqiang</creator><creatorcontrib>Peng, Zheng ; Zhang, Xu ; Yao, Zhiqiang</creatorcontrib><description>We present a sufficient condition for monotonicity of the nonlinear nonsmooth system generated by Fischer–Burmeister function associated with nonlinear complementarity problem. Based on the presented condition, the nonlinear complementarity problem considered in this paper is equivalently formulated to a nonsmooth monotone system. We then propose a modified multivariate spectral gradient projection method for the resulting system, and establish the global convergence without smoothness and Lipschitz condition. Preliminary numerical experiments show that, compared to some existing methods, the proposed method is effective.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02465-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Lipschitz condition ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Multivariate analysis ; Smoothness</subject><ispartof>Computational & applied mathematics, 2023-12, Vol.42 (8), Article 323</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4ec4545190d36894b325e585d8f6d22c6ef4fd55d1e0c049027b37d6fb97bff43</cites><orcidid>0000-0003-2932-4765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-023-02465-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-023-02465-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Peng, Zheng</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Yao, Zhiqiang</creatorcontrib><title>A modified multivariate spectral gradient projection method for nonlinear complementarity problems</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>We present a sufficient condition for monotonicity of the nonlinear nonsmooth system generated by Fischer–Burmeister function associated with nonlinear complementarity problem. Based on the presented condition, the nonlinear complementarity problem considered in this paper is equivalently formulated to a nonsmooth monotone system. We then propose a modified multivariate spectral gradient projection method for the resulting system, and establish the global convergence without smoothness and Lipschitz condition. Preliminary numerical experiments show that, compared to some existing methods, the proposed method is effective.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Lipschitz condition</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multivariate analysis</subject><subject>Smoothness</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19WbV9Muh8EXDLjRdWibZMzQNjXJOMy_N1rBnYvL5V6-cw4chK4J3BIAeRc5MMILoCwPL0VxOEELUoEsgAE9RQtKWVWwEtg5uohxB8Ak4XyB2hUevHbWGY2HfZ_cZxNckwyOk-lSaHq8DY12Zkx4Cn6Xf86PeDDp3WtsfcCjH3s3mibgzg9Tb4aMZot0_ObbfMdLdGabPpqr371Ebw_3r-unYvPy-LxebYqOSkgFNx0XXJAaNCurmreMCiMqoStbakq70lhutRCaGOiA10Bly6QubVvL1lrOluhm9s3BH3sTk9r5fRhzpKKVpDUhtZSZojPVBR9jMFZNwQ1NOCoC6rtLNXepcpfqp0t1yCI2i2KGx60Jf9b_qL4AlAV5pQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Peng, Zheng</creator><creator>Zhang, Xu</creator><creator>Yao, Zhiqiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2932-4765</orcidid></search><sort><creationdate>20231201</creationdate><title>A modified multivariate spectral gradient projection method for nonlinear complementarity problems</title><author>Peng, Zheng ; Zhang, Xu ; Yao, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4ec4545190d36894b325e585d8f6d22c6ef4fd55d1e0c049027b37d6fb97bff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Lipschitz condition</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multivariate analysis</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zheng</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Yao, Zhiqiang</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Zheng</au><au>Zhang, Xu</au><au>Yao, Zhiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified multivariate spectral gradient projection method for nonlinear complementarity problems</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><artnum>323</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>We present a sufficient condition for monotonicity of the nonlinear nonsmooth system generated by Fischer–Burmeister function associated with nonlinear complementarity problem. Based on the presented condition, the nonlinear complementarity problem considered in this paper is equivalently formulated to a nonsmooth monotone system. We then propose a modified multivariate spectral gradient projection method for the resulting system, and establish the global convergence without smoothness and Lipschitz condition. Preliminary numerical experiments show that, compared to some existing methods, the proposed method is effective.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02465-w</doi><orcidid>https://orcid.org/0000-0003-2932-4765</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2023-12, Vol.42 (8), Article 323 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2872911977 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Lipschitz condition Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Multivariate analysis Smoothness |
title | A modified multivariate spectral gradient projection method for nonlinear complementarity problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20multivariate%20spectral%20gradient%20projection%20method%20for%20nonlinear%20complementarity%20problems&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Peng,%20Zheng&rft.date=2023-12-01&rft.volume=42&rft.issue=8&rft.artnum=323&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02465-w&rft_dat=%3Cproquest_cross%3E2872911977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872911977&rft_id=info:pmid/&rfr_iscdi=true |