Tin sulfide supported on cellulose nanocrystals-derived carbon as a green and effective catalyst for CO2 electroreduction to formate

This work reports a whole green two-step approach for the synthesis of novel catalysts for efficient CO 2 conversion. A conductive carbon support was firstly obtained via pyrolysis of cellulose nanocrystals (CNCs), and the carbon surface was successively decorated with tin sulfide (SnS) through a mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2023-10, Vol.58 (37), p.14673-14685
Hauptverfasser: Garino, Nadia, Monti, Nicolò, Bartoli, Mattia, Pirri, Candido F., Zeng, Juqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14685
container_issue 37
container_start_page 14673
container_title Journal of materials science
container_volume 58
creator Garino, Nadia
Monti, Nicolò
Bartoli, Mattia
Pirri, Candido F.
Zeng, Juqin
description This work reports a whole green two-step approach for the synthesis of novel catalysts for efficient CO 2 conversion. A conductive carbon support was firstly obtained via pyrolysis of cellulose nanocrystals (CNCs), and the carbon surface was successively decorated with tin sulfide (SnS) through a microwave-assisted hydrothermal process. The morphology and carbon structure were characterized by field emission scanning electron microscopy and Raman spectroscopy, and the presence of SnS decoration was confirmed by X-ray photoelectron spectroscopy and X-ray diffraction analyses. The SnS supported on CNC-derived carbon shows enhanced catalytic activity for the CO 2 conversion to formate (HCOO − ). Good selectivity of 86% and high partial current density of 55 mA cm −2 are reached at − 1.0 V vs. reversible hydrogen electrode in KHCO 3 electrolyte. Additionally, the mass activity of the composite catalyst achieves a value as high as 262.9 mA mg Sn −1 for HCOO − formation, demonstrating good utilization efficiency of Sn metal. In this work, the low-cost CNC-derived carbon is evidenced to be easily decorated with metal species and thus shows high versatility and tailorability. Incorporating metal species with conductive high-surface carbon supports represents an effective strategy to realize active and stable electrocatalysts, allowing efficient utilization of metals especially the raw and precious ones. Graphical abstract
doi_str_mv 10.1007/s10853-023-08925-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872495510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872495510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-24141501de93cb1f2398e704925406f70bcd8f703144bfeecba59f5677512a1d3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouK7-AU8BL16qk69te5TFLxC86Dmk6WTp0m3WpBW8-8OddQXBg5AwgXnel5m8jJ0LuBIA5XUWUBlVgKRb1dIU8oDNhClVoStQh2wGIGUh9UIcs5Oc1wBgSilm7POlG3ie-tC1SHW7jWnElseBe-z7qY8Z-eCG6NNHHl2fixZT906Ed6khymXu-Coh0nNoOYaAfiSA-oSThoeY-PJZcuypk2LCdiKCpGPc9TZuxFN2FMgbz37qnL3e3b4sH4qn5_vH5c1T4VW9GGl8oYUB0WKtfCOCVHWFJWjaV8MilND4tqKihNZNQPSNM3Uwi7I0QjrRqjm73PtuU3ybMI920-Xdnm7AOGWrhKFDP6kJvfiDruOUBprOyqqUujZGAFFyT_kUc04Y7DZ1G5c-rAC7C8bug7EUjP0OxkoSqb0oEzysMP1a_6P6Am_nkco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872495510</pqid></control><display><type>article</type><title>Tin sulfide supported on cellulose nanocrystals-derived carbon as a green and effective catalyst for CO2 electroreduction to formate</title><source>Springer Nature - Complete Springer Journals</source><creator>Garino, Nadia ; Monti, Nicolò ; Bartoli, Mattia ; Pirri, Candido F. ; Zeng, Juqin</creator><creatorcontrib>Garino, Nadia ; Monti, Nicolò ; Bartoli, Mattia ; Pirri, Candido F. ; Zeng, Juqin</creatorcontrib><description>This work reports a whole green two-step approach for the synthesis of novel catalysts for efficient CO 2 conversion. A conductive carbon support was firstly obtained via pyrolysis of cellulose nanocrystals (CNCs), and the carbon surface was successively decorated with tin sulfide (SnS) through a microwave-assisted hydrothermal process. The morphology and carbon structure were characterized by field emission scanning electron microscopy and Raman spectroscopy, and the presence of SnS decoration was confirmed by X-ray photoelectron spectroscopy and X-ray diffraction analyses. The SnS supported on CNC-derived carbon shows enhanced catalytic activity for the CO 2 conversion to formate (HCOO − ). Good selectivity of 86% and high partial current density of 55 mA cm −2 are reached at − 1.0 V vs. reversible hydrogen electrode in KHCO 3 electrolyte. Additionally, the mass activity of the composite catalyst achieves a value as high as 262.9 mA mg Sn −1 for HCOO − formation, demonstrating good utilization efficiency of Sn metal. In this work, the low-cost CNC-derived carbon is evidenced to be easily decorated with metal species and thus shows high versatility and tailorability. Incorporating metal species with conductive high-surface carbon supports represents an effective strategy to realize active and stable electrocatalysts, allowing efficient utilization of metals especially the raw and precious ones. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08925-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Carbon dioxide ; Catalysts ; Catalytic activity ; Catalytic converters ; Cellulose ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemical synthesis ; Chemistry and Materials Science ; Classical Mechanics ; Conversion ; Crystallography and Scattering Methods ; Decoration ; Electrocatalysts ; electrodes ; electrolytes ; electron microscopy ; Field emission microscopy ; formates ; hydrogen ; Materials Science ; microwave treatment ; Nanocrystals ; Photoelectrons ; Polymer Sciences ; Pyrolysis ; Raman spectroscopy ; Solid Mechanics ; Spectrum analysis ; sulfides ; Tin ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Journal of materials science, 2023-10, Vol.58 (37), p.14673-14685</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-24141501de93cb1f2398e704925406f70bcd8f703144bfeecba59f5677512a1d3</citedby><cites>FETCH-LOGICAL-c396t-24141501de93cb1f2398e704925406f70bcd8f703144bfeecba59f5677512a1d3</cites><orcidid>0000-0001-8885-020X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-023-08925-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-023-08925-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Garino, Nadia</creatorcontrib><creatorcontrib>Monti, Nicolò</creatorcontrib><creatorcontrib>Bartoli, Mattia</creatorcontrib><creatorcontrib>Pirri, Candido F.</creatorcontrib><creatorcontrib>Zeng, Juqin</creatorcontrib><title>Tin sulfide supported on cellulose nanocrystals-derived carbon as a green and effective catalyst for CO2 electroreduction to formate</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This work reports a whole green two-step approach for the synthesis of novel catalysts for efficient CO 2 conversion. A conductive carbon support was firstly obtained via pyrolysis of cellulose nanocrystals (CNCs), and the carbon surface was successively decorated with tin sulfide (SnS) through a microwave-assisted hydrothermal process. The morphology and carbon structure were characterized by field emission scanning electron microscopy and Raman spectroscopy, and the presence of SnS decoration was confirmed by X-ray photoelectron spectroscopy and X-ray diffraction analyses. The SnS supported on CNC-derived carbon shows enhanced catalytic activity for the CO 2 conversion to formate (HCOO − ). Good selectivity of 86% and high partial current density of 55 mA cm −2 are reached at − 1.0 V vs. reversible hydrogen electrode in KHCO 3 electrolyte. Additionally, the mass activity of the composite catalyst achieves a value as high as 262.9 mA mg Sn −1 for HCOO − formation, demonstrating good utilization efficiency of Sn metal. In this work, the low-cost CNC-derived carbon is evidenced to be easily decorated with metal species and thus shows high versatility and tailorability. Incorporating metal species with conductive high-surface carbon supports represents an effective strategy to realize active and stable electrocatalysts, allowing efficient utilization of metals especially the raw and precious ones. Graphical abstract</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Cellulose</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Conversion</subject><subject>Crystallography and Scattering Methods</subject><subject>Decoration</subject><subject>Electrocatalysts</subject><subject>electrodes</subject><subject>electrolytes</subject><subject>electron microscopy</subject><subject>Field emission microscopy</subject><subject>formates</subject><subject>hydrogen</subject><subject>Materials Science</subject><subject>microwave treatment</subject><subject>Nanocrystals</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Pyrolysis</subject><subject>Raman spectroscopy</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>sulfides</subject><subject>Tin</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1LxDAQhoMouK7-AU8BL16qk69te5TFLxC86Dmk6WTp0m3WpBW8-8OddQXBg5AwgXnel5m8jJ0LuBIA5XUWUBlVgKRb1dIU8oDNhClVoStQh2wGIGUh9UIcs5Oc1wBgSilm7POlG3ie-tC1SHW7jWnElseBe-z7qY8Z-eCG6NNHHl2fixZT906Ed6khymXu-Coh0nNoOYaAfiSA-oSThoeY-PJZcuypk2LCdiKCpGPc9TZuxFN2FMgbz37qnL3e3b4sH4qn5_vH5c1T4VW9GGl8oYUB0WKtfCOCVHWFJWjaV8MilND4tqKihNZNQPSNM3Uwi7I0QjrRqjm73PtuU3ybMI920-Xdnm7AOGWrhKFDP6kJvfiDruOUBprOyqqUujZGAFFyT_kUc04Y7DZ1G5c-rAC7C8bug7EUjP0OxkoSqb0oEzysMP1a_6P6Am_nkco</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Garino, Nadia</creator><creator>Monti, Nicolò</creator><creator>Bartoli, Mattia</creator><creator>Pirri, Candido F.</creator><creator>Zeng, Juqin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-8885-020X</orcidid></search><sort><creationdate>20231001</creationdate><title>Tin sulfide supported on cellulose nanocrystals-derived carbon as a green and effective catalyst for CO2 electroreduction to formate</title><author>Garino, Nadia ; Monti, Nicolò ; Bartoli, Mattia ; Pirri, Candido F. ; Zeng, Juqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-24141501de93cb1f2398e704925406f70bcd8f703144bfeecba59f5677512a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Cellulose</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Conversion</topic><topic>Crystallography and Scattering Methods</topic><topic>Decoration</topic><topic>Electrocatalysts</topic><topic>electrodes</topic><topic>electrolytes</topic><topic>electron microscopy</topic><topic>Field emission microscopy</topic><topic>formates</topic><topic>hydrogen</topic><topic>Materials Science</topic><topic>microwave treatment</topic><topic>Nanocrystals</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Pyrolysis</topic><topic>Raman spectroscopy</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>sulfides</topic><topic>Tin</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garino, Nadia</creatorcontrib><creatorcontrib>Monti, Nicolò</creatorcontrib><creatorcontrib>Bartoli, Mattia</creatorcontrib><creatorcontrib>Pirri, Candido F.</creatorcontrib><creatorcontrib>Zeng, Juqin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garino, Nadia</au><au>Monti, Nicolò</au><au>Bartoli, Mattia</au><au>Pirri, Candido F.</au><au>Zeng, Juqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin sulfide supported on cellulose nanocrystals-derived carbon as a green and effective catalyst for CO2 electroreduction to formate</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>58</volume><issue>37</issue><spage>14673</spage><epage>14685</epage><pages>14673-14685</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This work reports a whole green two-step approach for the synthesis of novel catalysts for efficient CO 2 conversion. A conductive carbon support was firstly obtained via pyrolysis of cellulose nanocrystals (CNCs), and the carbon surface was successively decorated with tin sulfide (SnS) through a microwave-assisted hydrothermal process. The morphology and carbon structure were characterized by field emission scanning electron microscopy and Raman spectroscopy, and the presence of SnS decoration was confirmed by X-ray photoelectron spectroscopy and X-ray diffraction analyses. The SnS supported on CNC-derived carbon shows enhanced catalytic activity for the CO 2 conversion to formate (HCOO − ). Good selectivity of 86% and high partial current density of 55 mA cm −2 are reached at − 1.0 V vs. reversible hydrogen electrode in KHCO 3 electrolyte. Additionally, the mass activity of the composite catalyst achieves a value as high as 262.9 mA mg Sn −1 for HCOO − formation, demonstrating good utilization efficiency of Sn metal. In this work, the low-cost CNC-derived carbon is evidenced to be easily decorated with metal species and thus shows high versatility and tailorability. Incorporating metal species with conductive high-surface carbon supports represents an effective strategy to realize active and stable electrocatalysts, allowing efficient utilization of metals especially the raw and precious ones. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08925-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8885-020X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2023-10, Vol.58 (37), p.14673-14685
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2872495510
source Springer Nature - Complete Springer Journals
subjects Carbon
Carbon dioxide
Catalysts
Catalytic activity
Catalytic converters
Cellulose
Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemical synthesis
Chemistry and Materials Science
Classical Mechanics
Conversion
Crystallography and Scattering Methods
Decoration
Electrocatalysts
electrodes
electrolytes
electron microscopy
Field emission microscopy
formates
hydrogen
Materials Science
microwave treatment
Nanocrystals
Photoelectrons
Polymer Sciences
Pyrolysis
Raman spectroscopy
Solid Mechanics
Spectrum analysis
sulfides
Tin
X ray photoelectron spectroscopy
X-ray diffraction
title Tin sulfide supported on cellulose nanocrystals-derived carbon as a green and effective catalyst for CO2 electroreduction to formate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20sulfide%20supported%20on%20cellulose%20nanocrystals-derived%20carbon%20as%20a%20green%20and%20effective%20catalyst%20for%20CO2%20electroreduction%20to%20formate&rft.jtitle=Journal%20of%20materials%20science&rft.au=Garino,%20Nadia&rft.date=2023-10-01&rft.volume=58&rft.issue=37&rft.spage=14673&rft.epage=14685&rft.pages=14673-14685&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08925-2&rft_dat=%3Cproquest_cross%3E2872495510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872495510&rft_id=info:pmid/&rfr_iscdi=true